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Executive Summary

With support from the National Science Foundation, the W. M. Keck Foundation, and Lawrence
University, we in the Department of Physics at Lawrence University have for two decades been
developing the computational dimensions of our curriculum, both at the introductory and at the
intermediate and advanced levels. We have equipped our introductory laboratory with computers,
assorted sensors, and suitable software; we have built a Computational Physics Laboratory (CPL)
that makes a wide spectrum of hardware and software available to students; we have developed a
curricular approach that introduces students to these resources and to prototypical applications;
we have incorporated computational dimensions into our advanced laboratory offerings; and we
have drafted several hundred pages of instructional materials, some of which have in the last few
years been published. This report describes the history of these developments at Lawrence, the
computational components of our curriculum, and the text written to support these components.

Based on the premise that twenty-first century physicists cannot function fully if they are
unaware of the role that computation can play in both theoretical and experimental endeavors and
if they lack at least some skill in applying computational approaches when appropriate, we have
structured a curriculum that

• introduces freshmen to computer-based statistical data analysis, curve fitting, graphical visu-
alization, and on-line data acquisition,

• requires sophomores to take a course called Computational Mechanics, in which they learn
classical mechanics at an intermediate level, apply symbolic and numerical computation for
solving ordinary differential equations, evaluating integrals, and generating graphical displays,
and use LATEX for preparing documents,

• expects students to use computational resources on their own initiative during the rest of their
time at Lawrence (and encourages that use by granting 24/7 access to the CPL);

• directs students to use computational resources in several upper-level courses;
• offers an elective junior/senior course that focuses on finite difference and finite element ap-

proaches to partial differential equations; and
• supports the use of computers for the conduct of senior independent studies.

By the time of graduation, all physics majors at Lawrence have developed a comfortable familiarity
with computational approaches to problems and some have become quite adept at sophisticated
applications.

Among the outcomes of our two-decade long effort is a text, Computation and Problem
Solving in Undergraduate Physics, which has grown along with our curriculum but has also expanded
beyond our curriculum to include, as options, use of software packages different from those chosen at
Lawrence. This book is now available in several different versions to support inclusion of computation
in undergraduate physics curricula at institutions other than Lawrence.
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Preface and Acknowledgments

The primary purpose of an undergraduate program in physics is to generate a full realization of the
beauty, breadth, and power of the discipline and to develop both an understanding of fundamental
concepts and the skills to use a variety of tools—both theoretical and experimental—to apply and test
those concepts. In the last two or three decades of the twentieth century, computational approaches
to addressing both theoretical and experimental problems have taken their place alongside the more
traditional approaches. The twenty-first century physicist unfamiliar with computational approaches
lacks skills that are now critical to the successful pursuit of the field.

To be sure, computers have been used in undergraduate programs in departments of physics
at many institutions for quite some time. The overwhelming majority of these applications, however,
has focused on introductory courses, in which—typically—students either run instructor-written
programs or access web-based resources, both of which are designed to support the teaching of the
concepts of physics. Valuable though uses of computers to support the teaching of physics have
been and continue to be, the exposure of undergraduate physics majors to computation cannot be
limited to those applications. The important objective for physics majors at the beginning of the
twenty-first century is not so much to learn how to use programs written by others to reinforce
fundamental concepts as to learn how to use whatever tools are appropriate and available to create
their own computer-based solutions. To this end, contemporary curricula must assure that grad-
uates are familiar with the capabilities—and limitations—of available tools, are introduced to an
assortment of standard algorithms applied in physical contexts to standard problems and, by the
time of graduation, are able to use computers not only for the learning of physics but even more for
the doing of physics.

In the last few years, computation has indeed begun to find its way into upper-level courses
in computational physics or as an inclusion in individual courses on other topics. Unfortunately,
these courses often come along late in the student’s undergraduate program, and students therefore
do not encounter computational approaches early enough for those approaches to become almost
second-nature by the time of graduation. Further, single courses, wherever they occur during the
students’ undergraduate days, are decoupled from the rest of the curriculum and typically introduce
only those resources needed for the specific course; they do not foster a broad appreciation of the
versatility and scope of computational approaches.

In the last couple of years, a systematic and cooperative effort to explore ways to enhance
the use of computation in upper-level undergraduate physics and to provide materials to support
that effort has finally begun to emerge. At the 2005 summer meeting of the American Association of
Physics Teachers (AAPT) in Salt Lake City, UT, for example, Bruce Mason, founder of ComPADRE,
Norman Chonacky, editor of Computers in Science and Engineering (CiSE ), and David Winch,
Professor of Physics Emeritus at Kalamazoo College, convened an informal crackerbarrel session on
the topic “Building a Physics Computing Community for Undergraduate Education”. The session
was attended by key early adopters of computational physics who expressed many varied perspectives
on experiences to date and prospects for the future. With support from CiSE, Robert Fuller,
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Professor of Physics Emeritus at the University of Nebraska, was commissioned to conduct a survey
of all uses of computation in undergraduate physics programs throughout the country. That survey
produced baseline national data and led to the identification of invitees for contributions both to
a session of invited papers and to a poster session at the 2006 summer meeting of the AAPT
in Syracuse, NY. Further, the September/October 2006 (Volume 8, Number 5) issue of CiSE was
devoted to the theme “Computation in Physics Courses”. It included the results of Professor Fuller’s
survey, five articles about several approaches (texts based on the invited papers delivered at the
Syracuse meeting), and—as a sidebar to Guest Editor Professor Winch’s introduction—abstracts
of the seventeen invited posters mounted at the poster session at the same meeting. The posters
themselves are available from links at the CiSE website, specifically

http://opac.ieeecomputersociety.org/opac?year=2006&volume=8&issue=5&acronym=cise

On the eve of the invited sessions at the Syracuse meeting and sponsored by CiSE, a dinner discussion
among a dozen and a half of the current major players launched a collaborative effort to develop
ways to include more computation in undergraduate physics programs. As next steps, CiSE Editor
Chonacky is spearheading that effort by offering CiSE support to continue the national discussion
and by seeking the support of professional societies and outside foundations for a development
project. The theme issue of CiSE is an example of publicizing the effort. In November, 2006, the
Shodor Educational Foundation convened a meeting of selected players to brainstorm about and
plan the next steps toward such a project.

The Department of Physics at Lawrence University has been ahead of the pack. In the
mid 1980s, we recognized the growing importance of computation to the serious physicist. Since
that time, we have been striving to embed the use of general purpose graphical, symbolic, and
numerical computational tools throughout our curriculum. Developed over more than two decades,
our approach involves

• introducing freshman to tools for on-line data acquisition, statistical data analysis and curve
fitting;

• introducing sophomores to the simulation of electronic circuits in Electronics,

• introducing sophomores to computer-based symbolic, numerical, and visualization tools in a
required course titled Computational Mechanics, which develops classical mechanics at an inter-
mediate level while giving particular attention to uses of computational resources in application
to mechanics problems that involve graphical visualization, ordinary differential equations, in-
tegrals, eigenvalues, and eigenvectors, and to introducing the use of LATEX for the preparation
of documents and reports;

• incorporating computational approaches alongside traditional approaches to problems in many
intermediate and advanced courses, most of which list Computational Mechanics as a prereq-
uisite;

• providing more exposure to on-line data acquisition, data analysis, graphical visualization of
data, and report writing in a required junior course titled Advanced Laboratory ;

• offering juniors and seniors the elective course Computational Physics, which has Computa-
tional Mechanics as a prerequisite and focuses on numerical solution of the wave, diffusion,
and Laplace equations by finite difference and finite element methods.

• making computational resources available and, through 24/7 access to the Computational
Physics Laboratory, encouraging students to use these resources routinely on their own initia-
tive whenever that use seems appropriate.
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In the twenty-plus years since the start of this endeavor, numerous materials have been drafted
and redrafted and tested and retested. These materials have now been assembled into a flexible
text that is customizable to reflect many different choices of hardware and software. Details about
the Lawrence curricular approach and about this text, titled Computation and Problem Solving
in Undergraduate Physics, are described in this report and also posted on the project web site at
www.lawrence.edu/dept/physics/ccli.

This report, which is being distributed to all domestic departments of physics that offer the
bachelor’s degree, embodies a progress report on a project that began slowly at Lawrence University
in the late 1960s and has been more consciously and vigorously pursued since the mid 1980s. While
the project will continue to evolve, it is now sufficiently well developed that documenting its current
state and some of the underlying motivations seems in order. The author hopes that this report
may prove useful to the steadily increasing numbers of departments that are giving serious thought
to including computational physics in their undergraduate curricula. Comments, suggestions, and
requests for additional copies should be directed to the author.
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Chapter 1

Introduction

1.1 Underlying Convictions

Practicing physicists routinely confront a variety of tasks that support their research but are periph-
eral to their main objectives. While physicists in different subareas will probably disagree about the
relative importance of particular tasks, most will agree that the more important and most frequent
of these tasks involve

• visualizing functions of one, two, and three variables graphically,
• solving algebraic equations,
• solving ordinary differential equations,
• solving partial differential equations,
• evaluating integrals,
• finding roots, eigenvalues, and eigenvectors,
• acquiring data,
• displaying data graphically,
• performing statistical analyses of data,
• fitting theoretically expected functions to data,
• processing images, and/or
• preparing reports and papers.

More often than not, pursuit of these tasks symbolically and analytically is at best tedious, difficult,
and prone to error and at worst essentially impossible. In many cases, however, these tasks can
be addressed by exploiting computational approaches. To facilitate their use of such approaches,
practicing physicists of the twenty-first century must be acquainted with1

• a common operating system, preferably some flavor of UNIX or LINUX,
• a good text editor, e.g. nedit[1] or xemacs[2],
• a spreadsheet program, e.g., Excel [3],
• an array/number processor, e.g., IDL[4], MATLAB[5], or OCTAVE[6],
• a symbolic manipulator, e.g., MAPLE[7], Mathematica[8], or MAXIMA[9],
• a visualization tool, e.g. Kaleidagraph[10] and (IDL, MATLAB, or OCTAVE),

1Citations in square brackets refer to items in the bibliography, which can be found starting on page 69.

1



2 CHAPTER 1. INTRODUCTION

• a standard computational language, e.g., FORTRAN or C or C++, at least sufficient to
support comfortable use of subroutine packages like Numerical Recipes[11], ODEPACK[12].
and MUDPACK[13],

• a program for circuit simulation, e.g., Multisim 7 [14] or SPICE[15];
• a program for data acquisition, e.g. LabView [16],
• a technical publishing system, e.g., LATEX[17],
• a drawing program for creating publication quality figures and diagrams, e.g., Tgif [18], and
• a presentation program, e.g., PowerPoint [19].

Undergraduate curricula that do not provide physics majors with at least an orientation to the
applicable algorithms and a reasonable spectrum of the appropriate computational tools are failing
to prepare their graduates for the activities that practicing scientists will find themselves doing
frequently and extensively in the twenty-first century.

Beyond the substance of the approaches introduced, a curriculum that responds to these
convictions must also make sure that students

• are aware of the hazards associated with doing finite-precision arithmetic on floating-point
numbers.

• are introduced to computational resources early enough so that they can continue to use these
resources at subsequent points in their undergraduate careers, thereby reinforcing the uni-
versality and broad applicability of those resources. An upper-level course in computational
physics is a valuable curricular inclusion, but students need to become acquainted with com-
putational resources long before they have either the mathematical or the physical background
to profit from a rigorous course in computational physics.

• use computational resources throughout the curriculum, again to emphasize the wide variety
of contexts in which computational resources can be a valuable aid to the conduct of careful
science. The point is best made—and the skills most reliably developed—if use of these
resources permeates the entire curriculum.

• focus initially on the tools themselves. To be sure, numerous examples drawn from physical
contexts must be used to motivate the study of techniques and tools, but the focus at first
must be on the features and capabilities of the tools. Otherwise, knowledge of the tools ends
up being limited to the capabilities needed for the specific problems encountered. Simply put,
encountering computational tools as an appendix to tasks of higher priority leads to a narrow,
unsystematic, and incomplete understanding of the capabilities of the tools and does not fully
set the stage for career-long, confident use of the tools in wider—and possibly unrelated—
contexts.

In the broadest of terms, by graduation (and, with any luck well before that time), each student
should have developed not only the ability to recognize when a computational approach may have
merit but also the skill to pursue that approach confidently, fluently, effectively, knowledgeably, and
independently on his or her own initiative.

1.2 The Challenge

The task before the physics educator is to design a physics curriculum that, without short-changing
important topics from the historical curriculum, nonetheless includes exposure to and opportunity
to build skill in the use of computational approaches to a selected important set of representative
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problems in physics. The skills must, of course, be developed within the context of numerous specific
problems from several areas of physics. The end objective, however, is not so much the results of
the analyses of those problems as the development of generalizable skills that prepare the student to
apply appropriate computational tools to other problems as they arise during the course of a career
and that provide a solid foundation on which the student can readily learn new computational
techniques as the need arises.

1.3 Overview of the Lawrence Response

The response in the Department of Physics at Lawrence University to the challenge posed in Sec-
tion 1.2 involves building infrastructure (i.e., acquiring hardware and software), revising curricula,
and drafting instructional materials—all of which contribute to our moving towards a full addressing
of the goals laid out in Section 1.1. More specifically, we have

• equipped our introductory and advanced laboratories with appropriate hardware and software
—see Sections 3.2 and 3.4.2, respectively—and built a Computational Physics Laboratory
(CPL)—see Appendix A.

• introduced computer acquisition of data, statistical analysis of data, and least squares fitting
in the introductory laboratories, as described in Section 3.2.

• introduced simulation of electronic circuits in Electronics, as described in Section 3.3.1.

• introduced Computational Mechanics, a required sophomore course that orients majors to the
CPL, as described briefly in Section 3.3.2 and more extensively in Section 4.1.

• introduced relaxation methods for Laplace’s equation in Electromagnetic Theory, as described
in Section 3.3.3.

• reinforced techniques for graphical visualization and for numerical and symbolic solution of
ordinary differential equations, evaluation of integrals, and finding of eigenvalues and eigen-
vectors in Quantum Mechanics, as described in Section 3.4.1.

• expanded the majors’ exposure to on-line data acquisition, techniques for data analysis and
curve fitting, and use of publishing software for generating reports in Advanced Laboratory, as
described in Section 3.4.2.

• introduced Computational Physics, an elective junior/senior course that focuses on partial
differential equations and the graphical visualization of their solutions, as described briefly in
Section 3.4.3 and more extensively in Section 4.2.

• incorporated computer-based exercises in other courses, as described at the beginning of Sec-
tion 3.4.

• drafted and redrafted numerous documents and, ultimately, a book, as described in Chapter 5.

• sought outside funding. A complete listing of outside support is included in the section titled
Acknowledgements on page vii in the preface.

• publicized our efforts in a number of talks, posters, and journal articles. A full listing of these
items is presented in Appendix A.6.
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The Lawrence approach to developing the abilities of students to use computational resources is
active; it requires students to play a personal role in their own learning; it forces students to defend
their work in writing; it gives students practice in preparing and delivering oral presentations; it
encourages students to work in groups; and it permeates our curriculum. More than any other
objective, we encourage students to use our computational resources whenever they feel it appro-
priate to do so, and we expect that, by the time of graduation, students will have developed both
a secure knowledge of computer-based approaches and the initiative and confidence to exploit those
approaches on their own initiative.

In Chapters 3–5, we provide fuller detail on the several computational dimensions of the
physics major at Lawrence. For background, however, we begin in Chapter 2 with a brief description
of the broader institutional and departmental context.



Chapter 2

The Institutional and
Departmental Context

2.1 About Lawrence

Founded in 1847 and located in Appleton, Wisconsin, Lawrence University is a nationally ranked,
private, coeducational, residential liberal arts college and conservatory of music with 130 full-time
faculty members and 1400 full-time students. Of the students, 1100 are pursuing the bachelor of arts
degree in the college, 165 are pursuing the bachelor of music degree in the conservatory, and 135 are
pursuing a five-year program leading to both degrees. About 10% of the students come from countries
other than the United States. A student-faculty ratio of about 11:1 fosters personalized teaching
and responsiveness to individual student needs. Small classes, specialized tutorials, and extensive
faculty-student collaboration in research characterize the Lawrence program. Jill Beck is currently
in her third year as president of Lawrence University, succeeding Richard Warch, who served for
twenty-five years prior to his retirement in June, 2004. For the past several years, applicant pressure
at Lawrence has been growing—2315 applicants,1304 admitted students, and an entering freshman
class of 374 in the fall of 2006. As of 30 June 2006, endowment stood at about $200M. In the
academic year 2000–01, our Departments of Chemistry and Biology moved to a new 78,000 square
foot, $18.1M science building (which also houses research space for one physics faculty member) and,
in the fall of 2001, the Department of Physics moved into substantially renovated spaces enlarged
by 40% in Youngchild Hall, which was first occupied in 1963 but experienced a $10M renovation
during the academic year 2000–01.

2.2 About the Department

The Department of Physics at Lawrence consists of five full-time faculty members. Professor David
M. Cook (Ph.D., Harvard, 1965; joined the faculty in 1965), who works in mathematical and com-
putational physics, and Professor John R. Brandenberger (Ph.D., Brown, 1968; joined the faculty
in 1968), whose interests lie in experimental atomic physics, laser spectroscopy, and the foundations
of quantum mechanics, will be retiring in June, 2008. Associate Professor Jeffrey A. Collett (Ph.D.,
Harvard, 1983; joined the faculty in 1995) is a condensed matter physicist who studies phase transi-
tions in thin films of liquid crystals. Associate Professor of Physics Matthew R. Stoneking (Ph.D.,
University of Wisconsin, 1994; joined the faculty in 1997) studies non-neutral plasmas. Associate

5
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Professor of Physics Megan K. Pickett (Ph.D., Indiana University, 1995; joined the faculty in 2006)
is a computational astrophysicist and is Professor Cook’s successor. In addition, Lawrence Fellow
Joan P. Marler (Ph.D., University of California–San Diego, 2005; joined the faculty in 2005) is a fun-
damental particle physicist in the second year of a two-year appointment. Finally, the Department
benefits from the services of Mr. LeRoy Frahm, electronics technician, and Mr. Thomas Hesselman,
machinist and instrument maker. Searches are currently underway for Professor Brandenberger’s
successor and for a Ph.D. physicist to be offered a three-year appointment as a Visiting Assistant
Professor of Physics, a continuing position that was created in 1996 and whose holder changes every
two or three years. With those hires, the Department will be fully staffed at five FTE in the years
after Professors Brandenberger and Cook retire.

In the mid 1980s, the Department of Physics adopted the goal of becoming one of the
premier small undergraduate physics departments in the country. To be sure, if a department is to
be included in that group, the departmental course offerings—its curriculum—must be first rate.
We are convinced, however, that a departmental program must be much more than its curriculum.
In particular, we strive each year to

• foster out-of-class interactions among students and between students and faculty (twice-weekly
mid-afternoon teas, annual department-wide weekend retreat, fall picnic),

• involve students in hosting visitors and candidates for positions,
• discuss matters of departmental concern with students,
• actively recruit prospective students and involve current students in those efforts,
• encourage students to work together,
• provide spaces that students can call their own,
• maintain a departmental colloquium series (talks by half a dozen outside visitors each year,

by faculty members, by students who conducted summer research at Lawrence or elsewhere,
and by students completing independent study projects),

• engage aggressively in faculty and student/faculty research in order to extend faculty produc-
tivity and longevity so that attempts at innovation and searches for funding are based upon a
continuous record of professional involvement and achievement,

• pursue outside support to nurture active research and to keep facilities and equipment up to
date, and

• provide 24/7 access to student spaces, the computational laboratory, and departmental library
holdings.

Our faculty offices lie side by side along a single hallway and student study spaces are near to those
offices. We try to build a community in which we work together to help students grapple successfully
with course material and to continue the forward-looking development of the Department.

That we have had some success in our efforts to become a premier department is attested
to by several items:

• Our raising since 1987 of more than $2.5M of outside support for faculty research, curricular
development, summer stipends for student researchers, travel to meetings, and dissemination
of developments at Lawrence.

• Our invited presentation as one of ten case-study schools at the October, 1998, AIP-APS-
AAPT national “Physics Revitalization Conference: Building Undergraduate Physics Pro-
grams for the 21st Century”.

• Professor Cook’s invited talk on building undergraduate physics programs, the talk delivered
at the April, 2001, Washington meeting of the American Physical Society.

• Our Department’s hosting in April, 2002, of a visit by a team from the National Task Force
on Undergraduate Physics, a group that was seeking insight into how we have strengthened
our program so as to pass that information on to departments striving to do likewise.



2.3. SIGNATURE PROGRAMS 7

• Professor Brandenberger’s invited talk on developing signature programs in physics, the talk
delivered at the May, 2002, Quebec City meeting of the Canadian Association of Physicists.

• Professor Cook’s and Professor Brandenberger’s invited talks on aspects of the Lawrence
physics program, the talks delivered at different sessions of the March, 2004, Montreal joint
meeting of the American Physical Society and the Canadian Association of Physicists.

• Professors Brandenberger and Collett’s invited workshop on signature programs, the workshop
conducted at the Tenth National Conference of the Council on Undergraduate Research, held
at LaCrosse, WI, in June, 2004.

• Between September, 2004, and June, 2006, two invitations to Professor Brandenberger and two
separate invitations to Professor Cook to provide outside reviews to departments of physics
at four different colleges, all interested in the insights gained by our experiences building a
physics program.

2.3 Signature Programs

In 1986, realizing that attracting strong majors would be difficult without something exciting to
attract them, Professor Brandenberger began the assembly of a unique laser facility to support
course work in laser physics and optics as well as experimental independent research. In 1988,
Professor Cook began the assembly of the Computational Physics Laboratory, which brought a strong
computational dimension to our upper-level courses, supporting theoretical independent research
and complementing experimental independent research as well. Currently, a similar effort in surface
physics is emerging.

In time, we came to refer to these specialized laboratories as the central facilities supporting
signature programs, which we define as innovative, high-visibility teaching efforts that focus on con-
temporary topics taught in well-equipped signature laboratories specifically designed and equipped
for these programs. Because of their pedagogic dimensions, signature programs are not identical
to faculty research, but the two are strongly coupled, and many of the experiments included in a
signature laboratory emerge from faculty research programs. Signature programs affect the total
departmental program in numerous ways: they support specialty courses that lend distinctiveness
to a department; they intensify student/faculty interaction and increase the drawing power of a
department; they foster departmental pride; they support student projects at several levels; they
increase departmental holdings of up-to-date equipment; and—perhaps most important of all for the
long-range future of a department and of physics programs nationally (see Section 2.4)—they serve
as staging areas for the active recruitment of science students.

In the computational signature program—the program most relevant to the present docu-
ment, the author has for the last twenty years been building the Lawrence Computational Physics
Laboratory (CPL) and revamping the departmental curriculum so that majors come to use sophis-
ticated computational tools like IDL, MAPLE, and LATEX whenever they deem it appropriate. We
have had outside support to the tune of nearly $725K for the acquisition of hardware, the con-
duct of summer programs in curricular development, the conduct of workshops for physics faculty
from around the country, and the support of released time for writing curricular materials. In
particular, the required sophomore course Computational Mechanics (to be described more fully in
Sections 3.3.2 and 4.1) which combines intermediate mechanics with an introduction to computa-
tional approaches to problems in physics, was introduced in 2002–03 to make sure that all of our
physics majors have developed a beginning acquaintance with our computational resources and have
developed skills that will support their continued use of these resources in subsequent studies. The
elective junior/senior course Computational Physics (to be described more fully in Sections 3.4.3
and 4.2), was introduced in 2004–05 to offer interested students an opportunity to extend their
knowledge and skills to include more advanced computational topics and techniques not covered in
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the sophomore course. Neither of these courses would have been possible without the infrastructure
of hardware and software provided by the CPL.

In retrospect, Professor Brandenberger’s decade-long exploration in the 1970s and early
1980s of laboratory computing was a precursor of and perhaps provided the germ for the notion
of the signature programs we conceived in the mid 1980s. Supported first by a Digital Equip-
ment Corporation (DEC) PDP-11 laboratory computer and then a DEC MINC computer, Professor
Brandenberger’s pilot program explored ways in which interfacing of computers with experimental
apparatus and on-line data acquisition would strengthen the undergraduate laboratory program.
This project, however, may have been ahead of its time, as it faded in the early 1980s because
expecting students to address the difficulties (assembly language programming to access interfaces,
control of the timing of measurements, . . .) associated with the then-available computers and mea-
suring equipment was ultimately deemed to be less important than exposing them to the topics that
the computational components displaced from the undergraduate laboratory experience.

2.4 Recruiting of Majors

A particularly important component of our efforts to build a strong program for physics majors
entails active recruiting of able prospective students. Starting in 1987 and continuing ever since, we
have hosted annual weekend workshops for prospective students. Each year, about 25–30 participants
are selected from 50–75 extremely able applicants. Selection of successful applicants is difficult.
Those whom we invite are especially able academically, well rounded personally, genuinely interested
in careers in the sciences, and highly motivated to success. Successful applicants spend a weekend
on campus, arriving in the afternoon on Friday, staying in the residence halls with current physics
majors, and leaving Sunday morning. On Friday evening, participants, current majors, and faculty
members enjoy a served dinner.1 The dinner is followed by a session in which participants and
faculty members introduce themselves to one another and, assisted by current students, faculty
members conduct a tour of the departmental facilities. From 8:30 AM until 4:00 PM on Saturday,
participants, working in teams of two and guided at each station by a current physics major, perform
several half-hour hands-on experiments. In the first years, almost all the experiments involved lasers
or computation. In more recent years, the spectrum has been broadened to include other areas of
current interest within the Department. In the past few years, eight or nine experiments have been
selected from experiments titled

• Build a Laser,
• Holography,
• Speed of Light (via time of flight of a laser pulse),
• Diffraction of Light (Schalow experiment with machinist’s rule),
• Xray Diffraction from Thin Films,
• Confinement of Non-Neutral Plasmas and Plasma Oscillations,
• Motion of Electrons in Magnetic Fields,
• Transverse Electromagnetic Modes in a Laser,
• Polarization and Malus’ Law,
• Scanning Tunneling Microscopy (with a bow to nanoscience),
• Computational Physics and Chaos (Lorentz attractor), and
• Atomic Spectroscopy.

1We try hard to persuade the prospective students that such meals are the norm at Lawrence, but then, fearing a
charge of false advertising, we correct that illusion by having them go through the standard food lines for lunch on
Saturday.
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Figure 2.1: Number of Physics Graduates versus Year. Annual recruiting workshops started in 1987
began influencing this number with the class of 1991. The points for the classes of 2007 and 2008
are based on current enrollments in those classes.

Saturday is busy, fast moving, and exhausting for participants and instructors alike. The day
concludes after dinner with several evening activities (watch selected videos; attend a concert or
play; visit the gym for pick-up volley ball or basketball) that provide a way for participants and
current majors to interact informally and socially as a complement to the intellectual and academic
activities of the morning and afternoon.

These workshops, which would not have been possible without the signature laboratories
described in Section 2.3, have had an enormous influence on the number and quality of physics
majors choosing to attend Lawrence. Each year six to ten of the participants and another several
individuals from our total applicant pool matriculate at Lawrence and pursue programs of study
that anticipate a major in physics. As shown in Fig. 2.1, these recruiting efforts have resulted in
our graduating an average of ten majors each year since 1991, the first year a graduating class was
affected by our recruiting efforts.2 More than half of our majors graduate with honors; more than
half embark immediately on advanced studies in strong graduate programs around the country.

2For the sake of calibration, note that, in 2003, only 6% of the 500+ institutions in the country that offer only the
bachelor’s degree in physics graduated ten or more majors; only 23% graduated 5 or more majors.
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Chapter 3

The Computational Components of
the Lawrence Curriculum

Computers have been used in physics instruction at Lawrence since 1964 when students in the
introductory courses were sent, card deck in hand, to the institution’s IBM 1620 computer to solve
ordinary differential equations, find energy eigenvalues for the quantum harmonic oscillator, and
analyze experimental data. Teletype terminals to a time-shared computer came along in 1969 and the
first institutionally owned time-shared computer—a Digital Equipment Corporation (DEC) PDP 11-
45—was installed in the early 1970s. Some of these early uses were spurred by Professor Cook’s
first sabbatical in 1971–72 at Dartmouth College, then a leader in educational applications of time-
shared computing. More consciously structured efforts to bring computing into the entire curriculum
trace to the first Computational Physics Laboratory (CPL) in 19881 and the first equipping of the
introductory laboratory with computers and hardware for on-line data acquisition in 1990.2 Since
that time, the hardware in the introductory laboratory has been changed twice and and the hardware
in the CPL has been changed three times. These two facilities now provide the infrastructure for
nearly all of the current uses of computers in our instructional program.

In broad outline, freshman prospective majors encounter LoggerPro[20], Kaleidagraph, and
Excel for data acquisition and analysis, curve fitting, and graphical visualization. Fall-term sopho-
mores in Electronics encounter Multisim 7 for circuit simulation and continue to use Kaleidagraph
and Excel ; winter-term sophomores in Computational Mechanics experience a concentrated ex-
posure to IDL, MAPLE, and LATEX for solving ODEs, evaluating integrals, visualizing functions
graphically, and preparing neatly printed problem solutions; and spring-term sophomores in Elec-
tromagnetic Theory continue to use IDL and MAPLE for graphical visualization and for numerical
solution of Laplace’s equation. Junior/senior courses in quantum mechanics, advanced laboratory,
computational physics, mathematical methods of physics, plasma physics, and advanced mechanics
make further explicit use of computers, though the extent of those uses varies with the instructor. In
addition, at all points in our curriculum, students are free to use the resources of the CPL whenever
they deem it appropriate or useful, and many do so in Advanced Laboratory, senior independent
projects, and many other contexts. Indeed, our primary objective in incorporating an early—and
substantial—explicit introduction to computation is to make sure our students develop sufficient
skills early enough in their studies at Lawrence to assure that, ultimately, they will have the neces-
sary knowledge and the personal confidence to pursue computational approaches fluently, effectively,
and independently on their own initiative.

1The CPL is fully described in Appendix A; financial support is acknowledged on page vii in the preface.
2The configuration of hardware and software in this introductory laboratory is described in Section 3.2 and in

footnote 3 in that section; financial support is acknowledged on page vii in the preface.
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Term I Term II Term III

Fresh Freshman Studies Freshman Studies Elective
Elective *Intro Classical Physics *Intro Modern Physics

Calculus I Calculus II Calculus III

Soph *Electronics *Computational Mechanics *E and M
Diff Eq/Lin Alg Elective Elective

Elective Elective Elective

Junior *Quantum Physics Elective *Advanced Lab
Elective Elective Physics Elective
Elective Elective Elective

Senior Capstone Physics Elective Elective
Elective Elective Elective
Elective Elective Elective

Available Physics Electives:

Group 1: Thermal Physics, Optics, Advanced Mechanics, Advanced E and M, Mathematical
Methods of Physics, Advanced Modern Physics, Plasma Physics, Solid State Physics, Laser
Physics, Computational Physics, Tutorials.

Group 2: Independent Studies/Capstone.

Table 3.1: Typical Program of a Physics Major. Courses in bold type are required for a minimum
major in physics; courses marked with an asterisk direct students explicitly to the computer and, in
most cases, include some instruction in one or more of our computational resources.

3.1 Typical Program for Physics Majors

An efficient way to describe the Lawrence approach is to track the computational experience of
matriculating freshman physics majors as they move towards graduation four years later. Each
year, full-time students at Lawrence take three courses in each of three ten-week terms. Class
periods are 70 minutes long, and a one-term course is treated officially as the equivalent of a 3-1/3
semester-hour course. While there are many variations, the typical program of a student pursuing
a physics major is shown in Table 3.1, in which courses marked with an asterisk direct students
explicitly to the computer and the ten physics and four mathematics courses shown in bold type
are required for a minimum major in physics, though the occasional matriculant will have sufficient
background to justify bypassing one or two introductory courses, especially in calculus. Seven to
ten of the (unqualified) electives will be chosen to satisfy various general education requirements.
On the order of ten electives (28% of the student’s program) are completely unconstrained by the
requirements for the Lawrence degree or for the major in physics, though most of our (typically)
ten graduates each year will take courses in physics, mathematics, and computer science beyond
the minimum required for the major. In addition, many will elect to undertake a senior capstone
project which, however, is not currently required for the major.
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Available physics electives, most of which are offered every other year, are also shown in
Table 3.1. Computational Physics makes extensive use of the CPL; in the rest of these courses, stu-
dents are free—and are often encouraged—to use those resources on their own initiative (and many
use them regularly, particularly for graphical visualization and preparation of problem solutions and
papers). Majors are required to take three courses from the eleven in Group 1 and may take as
many as five more from Groups 1 and 2 before exceeding an institutionally imposed limit of fifteen
courses in any single department. Tutorials and independent studies, the latter being elected by
about half of all senior majors and sometimes extending over more than one term and leading to
honors in independent study at graduation, offer a vehicle for students to study topics not included
in our regular course offerings.

Beyond our regular curriculum during the academic year, we encourage majors to seek
scientifically significant research experiences during the summers. Each summer, four to six students
who are rising juniors or rising seniors will be engaged as research assistants to Lawrence physics
faculty members and, occasionally, a rising sophomore will be offered that opportunity. In addition, a
few (again four to six) Lawrence physics majors will accept offers to participate in REU programs at
other institutions around the country or in industrial or government laboratories. These off-campus
positions are usually limited to rising seniors.

3.2 The Freshman Year (Physics 150, 160)

As freshmen, prospective physics majors at Lawrence first encounter computational approaches
in the introductory, calculus-based courses (Physics 150, 160). The infrastructure supporting the
computational components in these courses (and, incidentally, the computational components in
several introductory and outreach courses for non-majors) is housed in the introductory physics
laboratory.3 Computer-related hardware in that laboratory now consists of eight Hewlett-Packard
PCs running Windows XP, a Hewlett-Packard monochrome laser printer, LabPro[20] interfaces and
several sensors from Vernier Software and Technology, and units for gathering data on radioactive
counting rates from Spectrum Technologies, Inc. Students in these courses also use the NanoSurf
EasyScan scanning tunneling microscopes and atomic force microscopes that are technically part
of our emerging surface physics signature laboratory. Available software includes LoggerPro, Excel,
Kaleidagraph, the software for driving the Spectrum Technologies and Nanosurf hardware, Multisim 7
for circuit simulation in Electronics, and Praat [21] for spectral analysis of sound waves in Physics
of Music.

In particular, students use LoggerPro, Excel, Kaleidagraph, and image-processing software
associated with scanning tunneling microscopes. Exercises assigned in the nine or ten three-hour
laboratory sessions in each term routinely involve

3Computers have been used in this introductory laboratory since the late 1960s, when simple data analysis was
done on a Lawrence-owned batch-mode IBM 1620 computer, then through teletype access to a remote IBM 360
computer, and then on in-laboratory terminals to a succession of Lawrence-owned DEC PDP-11 and VAX time
shared computers. In 1990, an NSF grant for a project undertaken by then Assistant Professor John Gastineau, now
employed at Vernier Software, supported the acquisition of the first microcomputers (MAC SE30s), Vernier ULI cards,
and several sensors, and the laboratory took a large step in the direction of providing freshmen with an exposure
to on-line data acquisition, statistical data analysis, and graphical visualization of experimental data. Awarded in
1997, a grant from the NSF to Professor David M. Cook provided for the replacement of the original computers with
(then) state-of-the-art MAC 7300/180 and G3 computers and the acquisition of additional equipment and software
for Fourier analysis. While the proposal resulting in this grant focused on up-grading the introductory laboratory
to support the addition of a full laboratory to Professor Cook’s course Physics of Music, it almost goes without
saying that other introductory physics courses benefited from this upgrade. Finally, in the summer of 2004, Lawrence
University underwrote the updating of the equipment in this laboratory to its current status.
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• automated data acquisition in several experiments (as described in the next two paragraphs),
• statistical data analysis in essentially all experiments (Excel and Kaleidagraph),
• least squares fitting of linear and parabolic functions to experimental data in several experi-

ments (Excel and Kaleidagraph),
• graphical visualization (Kaleidagraph and software special to data-gathering equipment),
• creation of images with computer-controlled NanoSurf EasyScan scanning tunneling micro-

scopes and processing of those images, and
• radioactive counting experiments using hardware and associated software for data acquisition

from Spectrum Technologies, Inc.

Physics 150, the first course in this two-term rapidly paced sequence, lists one term of
calculus as a prerequisite—not a corequisite—and deals with classical physics, mostly mechanics
and electromagnetic theory; its current text is Young and Freedman.4 In the lecture portion of this
course, students are occasionally assigned exercises that send them to the laboratory computers for
graphing theoretical results or solving ordinary differential equations via Euler and improved Euler
methods using editable Excel templates supplied by the instructor. By far the bulk of the exposure
to computers, however, comes in the laboratory meetings, in which students perform experiments
titled

• Using the Laboratory Computers/Elements of Data Analysis, in which students are introduced
to the descriptive statistics associated with multiple measurements of single quantities and
to Excel as a tool for recording data and doing the requisite arithmetic to determine these
statistical parameters.

• Position, Velocity, and Acceleration, in which students explore the relationships among these
kinematic quantities, learn how to work with a sonic ranger, and have their first encounter with
on-line data acquisition and graphical display using LabPro interfaces and LoggerPro software.

• Free Fall, in which students use a spark-timer to obtain a record of position versus time for the
first half-second of the motion of an object falling from rest, enter the 25–30 measured posi-
tions manually into Excel, use Excel to calculate velocities and accelerations, copy appropriate
values into Kaleidagraph, and use several different approaches, including least squares fitting
to linear and parabolic functions, to extract measured values of the acceleration of gravity with
uncertainties.

• Hooke’s Law and Simple Harmonic Motion, in which students explore the relationship between
force and extension and the relationship between period and suspended mass for a Hooke’s
law spring, using Excel and Kaleidagraph to do arithmetic and least squares fitting. Then,
using the sonic ranger again, a force probe, and LoggerPro, students return to on-line data
acquisition to explore not only position, velocity, acceleration, and force as functions of time
but also velocity as a function of position (phase plane), force as a function of acceleration
(F = ma), and force as a function of extension (F = kx).

• Inelastic Collisions, in which the sonic ranger is again used to gather data on the inelastic
collision of a moving cart with a stationary cart, and Excel and Kaleidagraph are used to
assess (1) the applicability of conservation of linear momentum, (2) the agreement between
experimentally determined and theoretically predicted graphs of final velocity versus initial
velocity, and (3) the agreement between experimentally determined and theoretically predicted
graphs of final kinetic energy versus initial kinetic energy.

4University Physics (11th Edition), Hugh Young and Roger Freedman (Pearson/Addison-Wesley, San Francisco,
2004, ISBN 0-8053-9179-7).
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• Ballistic Pendulum (Cenco Apparatus), in which students use the rise of the pendulum to
measure the velocity of the projectile, then predict the position with uncertainty at which the
projectile will hit the floor when fired across the room, place a target, and then subject their
prediction to experimental test. The computer plays a smaller role in this experiment than in
most others, but still is used for statistical analyses of measured values.

• Charge to Mass Ratio of the Electron, in which students measure the currents (and hence the
magnetic fields) necessary to deflect an electron beam of known energy in circles of known
radii and then use least squares fitting of those measurements to extract a value for e/m with
uncertainty.

• The Driven String: Resonance and Standing Waves, in which mechanical drivers and suitable
signal generators acquired initially for the course Physics of Music are used to study standing
waves in a vibrating string. Students locate a dozen or more normal modes of oscillation and
use least squares fitting to extract information from graphs of frequency versus mode number
and of wavelength versus mode number.

• Interference: Wavelength of Light with a Steel Rule, in which students scatter a laser beam off
of the rulings on a machinist’s scale, measure the positions of the maxima in the interference
pattern on the wall, and use Excel and Kaleidagraph to reduce the data (a fairly complicated
numerical process), plot a suitable graph, perform a least squares analysis, and ultimately
extract a measurement of the wavelength of the light in the laser beam.

Physics 160, the second course in this two-term sequence, deals with relativity, quantum
mechanics, solid state physics, and particle physics; its current text is Tipler.5 Students are free to
use the laboratory computers as they work on the weekly assignments but, again, the bulk of the
exposure to computers comes in the laboratory meetings, in which students perform experiments
titled

• Speed of Light, in which students use a pulsed laser and an oscilloscope in a time-of-flight
measurement of the speed of light. Excel is used for reduction of the measurements.

• Special Relativity Simulation, in which students use Edwin F. Taylor’s SpaceTime[22] to explore
length contraction, time dilation, velocity addition, and the relativity of simultaneity. This
experiment is the only experiment in the introductory course in which students use a computer
simulation rather than real physical apparatus.

• The Photoelectric Effect, in which the stopping potential of photoelectrons is measured as a
function of the frequency of the incident light. Least squares fitting of the data leads to a
determination of Planck’s constant and the work function of the photoelectric surface.

• The Bohr Model and the Hydrogen Spectrum, in which students use a diffraction grating to
measure the wavelength of the lines in the Balmer spectrum. Those wavelengths are then
correlated with the predictions of the Bohr model. Excel is used for reduction of the measure-
ments.

• Electron Impact Excitation of Helium (Franck-Hertz Experiment), in which students determine
the excitation energies for helium initially in its ground state by measuring the current at a
collecting ring as a function of the energy of the bombarding electrons, associating peaks in
the resulting current with transition energies in the helium atoms. The computer plays only a
small role in this experiment.

5Modern Physics (4th Edition), Paul A. Tipler and Ralph A. Llewellyn (W. H. Freeman and Company, New York,
2003, ISBN 0-7167-4345-0).
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• The Scanning Tunneling Microscope (STM), in which students use a computer-controlled
NanoSurf EasyScan STM to generate and examine images of the surface of graphite. In
this experiment, on-line data acquisition and subsequent data analysis are integrated into a
single program that controls the entire process.

• Alpha, Beta, and Gamma Radiation, in which students use a computer-controlled Geiger
counter to explore the penetration of various radiations through different distances in air
and in other absorbers.

• Radioactive Decay Rate and Half-Life, in which students use a computer-controlled Geiger
counter to measure the activity of a short-lived isotope as a function of time.

• Gamma Spectroscopy, in which students use a scintillation counter and computer-controlled
pulse height analysis to measure the gamma ray spectrum emitted by available sources and to
identify the material of those sources by its spectrum

Throughout Physics 150 and 160, students are expected to keep complete, accurate, careful
records of their work while in the laboratory, and their laboratory records are graded each week not
only on the accuracy and thoroughness of the physics embodied but also on the quality of the record
as a record of what was done, how it was done, and what was thought along the way. Certainly,
this laboratory helps students develop their experimental skills and also their skills at keeping useful
records of experimental work. By the end of the freshman year, prospective majors have also begun
to develop their skills in the use of computational tools, particularly that subset of such skills of
particular value in the laboratory.

3.3 The Sophomore Year

Beyond the freshman year, majors—of course—continue to use Excel and Kaleidagraph. A serious
introduction to “real” computation, however, emerges in the sophomore year. In that year (and
thereafter), students have 24/7 access to our Computational Physics Laboratory (CPL), which
is equipped—see Appendix A—with hardware and software in all the categories enumerated in
Section 1.1 except PowerPoint and LabView . Fall-term sophomores are introduced explicitly to
circuit simulation in Electronics (Section 3.3.1); winter-term sophomores see several applications
in Computational Mechanics (Section 3.3.2); and spring-term sophomores see additional uses in
Electricity and Magnetism (Section 3.3.3).

3.3.1 Electronics (Physics 220)

The course Electronics (Physics 220) meets three times a week, twice for three-hour laboratory
sessions and once for a 70-minute lecture/discussion of the current topic. The bulk of the course
entails constructing various circuits and using assorted measuring instruments (oscilloscopes, signal
and function generators, frequency counters, digital voltmeters,and digital multimeters) to examine
the properties of the circuits. About 70% of the course is devoted to analog circuits, including LRC
resonant circuits and operational amplifiers, and 30% of the course is devoted to digital circuits. The
texts are Horowitz and Hill6 and Simpson,7 the first as a primary reference and important addition
to the students’ personal libraries and the second for most of the reading.

6Paul Horowitz and Winfield Hill, The Art of Electronics (Cambridge University Press, Cambridge, England, 1989,
ISBN 0-521-37095-7), Second Edition.

7Robert Simpson, Introductory Electronics for Scientists and Engineers (Prentice-Hall, Englewood Cliffs, NJ, 1987,
ISBN 0-205-08377-3), Second Edition. This book is out of print, but several copies are available in the laboratory.
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Throughout the term, students continue to hone their skills with Excel and Kaleidagraph.
In addition, early in the course, students are introduced to Multisim 7 software installed on the
computers in the introductory laboratory and, subsequently, use that software to complete a number
of the weekly problem assignments and, whenever they feel it appropriate, to predict or interpret
experimental results. Each student maintains a careful hand-written laboratory notebook, though
computer-produced graphs and spreadsheets will frequently be taped into that notebook. Towards
the end of the term, each student writes a journal-quality article on one of the experiments. Most
will use Microsoft Word for the drafting of this article but a few will by this time have learned—and
will use—LATEX. Many will use Multisim 7 to generate theoretical predictions for comparison with
their experimental results.

3.3.2 Computational Mechanics (Physics 225)

Prior to the academic year 2002–03, we offered a traditional course in intermediate mechanics, us-
ing Symon8 or Barger and Olsson9 as the text. In addition, we offered an elective course called
Computational Tools in Physics, which used locally produced documents10 as the text and, in that
period, provided the starting point in our nurturing of our students’ abilities to take full advantage
of the resources of the Computational Physics Laboratory (CPL). That full-credit course was of-
fered in three 1/3-credit segments, one in each of the three terms of our academic year, and was
taken by sophomores as an overload. Its topics were coordinated with the required courses taken
by sophomore majors. The first term focused on acquainting students with the rudimentary capa-
bilities of our CPL (the UNIX operating system, array processing and graphical visualization using
IDL, publishing scientific manuscripts using LATEX and Tgif, symbolic manipulations using MAPLE,
and circuit simulation using SPICE and was coordinated with Electronics. The second term was
coordinated with the intermediate course in classical mechanics, and focused on symbolic and nu-
merical approaches to ordinary differential equations (ODEs). The third term was coordinated with
an intermediate course in electricity and magnetism11 and focused on symbolic and numerical in-
tegration. Especially for those sophomores who did not elect Computational Tools in Physics, we
included two short computational workshops—one on IDL and the other on MAPLE—in the re-
quired sophomore mechanics course. Thus, all sophomores had at least a small, forced exposure to
the CPL, and some—but unfortunately not all—sophomores had a fully comprehensive introduction
to the available capabilities.

Beginning in the academic year 2002–03, the course Computational Tools in Physics was
discontinued, and the required sophomore course titled Computational Mechanics (Physics 225),
which replaced the course in classical mechanics, became the starting point in our nurturing of our
students’ abilities to take full advantage of the resources of the CPL. In brief, this course combines
about 60% of the material covered in a traditional course in intermediate mechanics with about
40% of the orientation to computing covered in the discontinued course Computational Tools in
Physics. The gain lies in the incorporation of the computational elements in a course that is required
of sophomore majors, thus assuring that all majors have an early introduction to computational
approaches, making possible the assumption of that background in all subsequent courses, and
supporting independent use of our computational resources even if individual faculty members in
later courses do not make explicit assignments involving those resources.

Computational Mechanics does not, of course, cover all of the topics treated in its prede-
cessor. In particular, Lagrangian mechanics and rigid body dynamics were moved to our elective

8Keith Symon, Mechanics (Addison Wesley, Reading, MA, 1971, ISBN 0-201-07392-7), Third Edition.
9Vernon D. Barger and Martin G. Olsson, Classical Mechanics: A Modern Perspective (McGraw-Hill, New York,

1995, ISBN 0-07-003734-5), Second Edition
10See Chapter 5.
11See Section 3.3.3.
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junior/senior course Advanced Mechanics. These topics thus remain available to junior and senior
majors but are not any longer encountered by all majors. We believe, however, that this loss is more
than compensated by the acquaintance all of our majors now have with computational approaches
and by their and our ability to exploit computational approaches at many points in our intermediate
and advanced curriculum.

Computational Mechanics is discussed in fuller detail in Section 4.1.

3.3.3 Electricity and Magnetism (Physics 230)

In Electricity and Magnetism (Physics 230), which uses Griffiths12 as its text, is almost always
taken by students immediately after they complete Computational Mechanics, which is the main
prerequisite. Thus, at the end of their sophomore year, majors have an immediate reinforcing
of some of the computational topics addressed in Computational Mechanics. Though the details
and the extent of computer use depend on the individual instructor, students in Electricity and
Magnetism use the CPL for graphical visualization of problem solutions worked out by hand; use
symbolic and numerical integration to evaluate electrostatic potentials, electric fields, and magnetic
fields; solve the Laplace equation using instructor-supplied templates written in IDL’s language; and
review numerical approaches to trajectory problems (which were treated more fully in Computational
Mechanics).

3.4 The Junior and Senior Years

With Computational Mechanics as a uniform background, subsequent theoretical and experimental
courses alike offer students many opportunities to continue honing their computational skills and,
depending on the instructor, some of these courses will direct students explicitly to the CPL for an
occasional exercise. Techniques for graphical visualization are used routinely on the students own
initiative in Optics, Advanced Mechanics, Advanced Electricity and Magnetism, Mathematical Meth-
ods of Physics, and Plasma Physics, all of which are alternate-year elective offerings. Most senior
capstone projects exploit the resources of the CPL, at least for graphical visualization and prepa-
ration of reports. Some recent senior projects, notably those in fluid mechanics, musical acoustics,
xray diffraction, mapping of astrophysical data, multiphoton quantum transitions, and theoretical
explorations of the confinement of non-neutral plasmas, have made extensive use of these facilities.
Some physics students use the CPL in conjunction with courses in other departments, particularly
mathematics. Further, once students have learned to use LATEX in Computational Mechanics, they
routinely use that tool for preparation of written papers and reports. All of these uses are facilitated
by our policy of granting sophomore, junior and senior majors 24/7 access to the CPL.

Three upper-level courses make more extensive and explicit use of the computer. Uses
in Quantum Mechanics, Advanced Laboratory, and Computational Physics are discussed in Sec-
tions 3.4.1, 3.4.2, and Sections 3.4.3 and 4.2, respectively.

12David J. Griffiths, Introduction to Electrodynamics (Prentice-Hall, Upper Saddle River, New Jersey, 1999), Third
Edition.
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3.4.1 Quantum Mechanics (Physics 310)

Quantum Mechanics (Physics 310), which uses either Griffiths13 or Cook14 as its text, is almost
always taken by students in the fall term of the junior year and, hence, provides the third term of
a comprehensive, intermediate-level exposure to mechanics, electromagnetic theory, and quantum
mechanics. As with Electricity and Magnetism, the details and the extent of computer use depend
on the individual instructor. Students are always free to use the resources of the CPL on their own
initiative and, by this point in their careers at Lawrence, they have acquired sufficient skill and
confidence that many in fact do see ways to use the computer to support their study of quantum
mechanics. When one of our more computer-oriented faculty members teaches this course, students
are explicitly directed to the computer for graphical visualizations of quantum wave functions, reflec-
tion and transmission coefficients, . . .; for symbolic and numerical solution of quantum eigenvalue
problems (e.g., infinite and finite depth potential wells, simple harmonic oscillator); for symbolic
and numerical determination of the time-evolution of Gaussian wave packets; for symbolic and nu-
merical evaluation of integrals to find matrix elements and then, for example, explore perturbation
expansions, selection rules, and the Stark effect for higher values of n than are usually addressed by
hand; etc.

3.4.2 Advanced Laboratory (Physics 330)

Technically, the laboratory dimensions of our program are outside the purview of responsibility
for the author of this report. Nonetheless, the exposure that majors have to computation before
enrolling in Advanced Laboratory supports their confident use of an assortment of computational
resources in that course and also provides the background that facilitates learning about new com-
putational techniques that support experimental science to complement the techniques they have
already learned in support of theoretical science.

The course Advanced Laboratory is required for physics majors and is usually taken by
juniors either in the winter or the spring term. Students work individually, and each has exclusive
access to the equipment when working on each experiment. Typically, in ten weeks, each student
does three or four experiments. For the sake of a serious exposure to research, each student spends
four or five weeks on the first experiment and is expected to study the pertinent literature, to do an
extremely thorough job of the experiment, to contribute something new to the experiment or explore
some new dimension of the physical system, to keep a careful laboratory record, to prepare a journal-
quality paper on the experiment, and to give a talk to the rest of the class on that experiment. While
new experiments are added and, occasionally, an experiment will be retired, the current options
include the experiments listed in Table 3.2. Most of these experiments involve use of Kaleidagraph
and other graphical visualization tools for examining acquired data, use of LATEX or other publishing
packages for preparing written reports, and use of PowerPoint or equivalent presentation software
for preparation of talks. The laboratory is equipped with several computers having interface cards
and with numerous measuring instruments that can output digital signals directly to computers,
and many experiments therefore involve on-line acquisition of data and compel the student to figure
out how to persuade the physical apparatus to communicate with a computer. Linear, polynomial,
and non-linear least squares fitting figures in numerous experiments. Occasionally, students use
numerical simulations to support comparison of theoretical predictions with experimental results.

13David J. Griffiths, Introduction to Quantum Mechanics (Prentice-Hall, Upper Saddle River, New Jersey, 2005,
ISBN 0-13-111892-7), Second Edition.

14David M. Cook, Non-Relativistic Quantum Mechanics. This set of notes, whose writing was started in 1967 and
which has seen numerous revisions over the years, has grown to a full—though as yet unpublished—text. A particular
feature distinguishing the current version from other books at the same level is its incorporation of computational
approaches alongside the more traditional analytic approaches to addressing quantum mechanical problems.
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• Gamma-Gamma Correlation,
• High Tc Superconductivity,
• Mossbauer Effect,
• Muon Decay,
• Compton Effect,
• Faraday Rotation,
• Optical Pumping in Rubidium,
• Xray Diffraction,
• Quantum Beats,
• Holography,
• Child’s Law,

• Saturated-Absorption Spectroscopy,
• Non-linear Quantum Optics,
• Electrical and Optical Properties of Thin Films,
• Alpha and Beta Spectroscopy,
• Electron Paramagnetic Resonance,
• Scanning Tunneling Microscopy,
• Atomic Force Microscopy,
• Raman Spectroscopy,
• Optogalvanic Spectroscopy,
• Population Dynamics in a Laser Plasma, and
• Laser Fundamentals.

Table 3.2: Experiments Available in Advanced Laboratory.

Those responsible for developing this course are working to incorporate LabView into some of the
experiments, but that inclusion is not yet available to students.

3.4.3 Computational Physics (Physics 540)

The main computational techniques of importance not included in Computational Mechanics apply
to generating and visualizing solutions to partial differential equations (PDEs). Some years ago, we
tried to incorporate finite-difference and finite-element approaches to PDEs into our junior/senior
electives Advanced Electricity and Magnetism and Mathematical Methods of Physics. That effort
failed, first—and primarily—because the necessary sacrifice of other topics (electromagnetic radia-
tion from accelerated particles, relativistic formulation of electromagnetic theory, Fourier analysis
and complex contour integration, . . .) was ultimately deemed unacceptable, and second because—at
the time—only those students who had elected Computational Tools in Physics had the necessary
background, so only a few juniors and seniors were prepared to profit from inclusion of those topics
in those courses. Once Computational Mechanics had been introduced and taught for two years,
however, all junior and senior majors then indeed had the appropriate background. Rather than
resurrecting our earlier incorporation of computational approaches to PDEs into other courses, how-
ever, we introduced a new junior/senior course titled Computational Physics (Physics 540). This
elective course lists Computational Mechanics as a prerequisite, so students who elect Physics 540
can move quickly to serious computation; they need not spend a portion of the course learning how
to log in and out, work with a text editor and a publishing package, send files to the printer, and
work with basic numerical and symbolic tools—skills that are critical to successful use of a computer
but at the same time are decidedly peripheral to the computational tasks at hand. In short, to use an
analogy from foreign languages, students come to Physics 540 already knowing the vocabulary and
the grammar, and they can begin right away to use these skills in application to the computational
topics themselves.

Computational Physics is discussed in fuller detail in Section 4.2.



Chapter 4

Central Courses

Two courses in the Lawrence physics curriculum have substantial computational components. Com-
putational Mechanics is offered every year, is required in the winter term of the sophomore year, and
provides all majors with an introduction to the resources of the Computational Physics Laboratory
(CPL). Computational Physics is an elective junior/senior course that is offered in alternate years,
lists Computational Mechanics as a prerequisite, and serves the 20–25% of our majors who seek
a more advanced understanding of computational approaches than is provided by the sophomore
course. Because these two courses are central to the computational dimensions of the Lawrence
curriculum, they are described more fully in this chapter than in the previous brief description in
Sections 3.3.2 and 3.4.3, respectively.

4.1 Computational Mechanics (Physics 225)

The main objectives of Computational Mechanics (Physics 225) are conveyed by its catalog de-
scription, which asserts that it “introduces symbolic and numerical computation through examples
drawn mainly from classical mechanics but also from classical electromagnetism and quantum me-
chanics” and that it “emphasizes computer-based approaches to graphical visualization, the solution
of ordinary differential equations, the evaluation of integrals, and the finding of eigenvalues and
eigenvectors”. Prerequisites for the course are Introductory Classical Physics and Differential Equa-
tions and Linear Algebra, which itself has three terms of calculus as prerequisites. The text for
the mechanics component, Notes for Computational Mechanics,1 is written by Professor Cook and
is comparable in level and sophistication to Symon2 or Barger and Olsson3 but is abbreviated to
include only those topics covered in the course; the text for the computational components is Com-
putation and Problem Solving in Undergraduate Physics (CPSUP), also written by Professor Cook.4

Over the years, the writing of successive drafts of the materials that ultimately found their way into
the version of CPSUP used for this course and ultimately the writing of that book was supported
by grants from the NSF; the actual design of the course and some of the polishing of the text was
supported by the 2001 grant from the W. M. Keck Foundation.5

1While these notes may ultimately be published, as of December, 2006, they are still very much in draft form.
2Keith Symon, Mechanics (Addison Wesley, Reading, MA, 1971, ISBN 0-201-07392-7), Third Edition.
3Vernon D. Barger and Martin G. Olsson, Classical Mechanics: A Modern Perspective (McGraw-Hill, New York,

1995, ISBN 0-07-003734-5), Second Edition
4Both the development of this book and its customizable structure are described more fully in Chapter 5.
5See the section titled Acknowledgments on page vii in the preface for more details on these grants.
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Week 01 Orientation to LINUX (including text editor)
Kinematics/Dynamics of Translation/Rotation
Impulse/Momentum/Work/Kinetic Energy
Gravity/Electromagnetic Force/Friction/Tension

Week 02 Orientation to IDL/TGIF (basic capabilities, visualization)

Week 03 Equations of motion (constant force/torque, force dependent
only on t, . . . only on x, . . . only on v)

Potential energy, SHM, and equilibrium
Work and potential energy in 3D

Week 04 Velocity-dependent forces
Damped and driven SHM
Resonance
Coupled and small amplitude oscillation

Week 05 HOUR EXAMINATION
Orientation to LATEX
Central Forces/Effective Potential Energy, Orbital Equations

Week 06 Planets, Satellites, Comets
MID-TERM READING PERIOD

Week 07 Orientation to MAPLE
Using MAPLE to solve ODEs
Algorithms to solve ODEs numerically

Week 08 Using IDL to solve ODEs numerically

Week 09 HOUR EXAMINATION
Symbolic Evaluation of Integrals

Week 10 Algorithms to Evaluate Integrals Numerically
Using IDL to Evaluate Integrals Numerically

Week 11 FINAL EXAMINATION

Table 4.1: Weekly Schedule for Computational Mechanics.

4.1.1 Outline of the Course

As is evident from the catalog description, Computational Mechanics has two distinct but intertwined
topics, mechanics and computation. The schedule for this course is displayed in Table 4.1. The
course begins with a tutorial exercise to acquaint students with the features of the workstations in
the CPL and with the LINUX operating system. Concurrently, students review and extend their
introductory studies of translational and rotational kinematics and dynamics, impulse, momentum,
work, kinetic energy, and common forces. They spend the second week of the term entirely in the
CPL becoming acquainted with the general capabilities of IDL, especially for graphical visualization
of scalar functions of one, two, and three variables, and with Tgif for generating drawings. In the
third and fourth weeks, the course returns to the fundamental laws of mechanics to set up and solve
the usual problems in one-dimensional motion via standard analytic techniques, and to extend the
definition of potential energy and conservative forces to three dimensions. Then, in the fifth and sixth
weeks, after a pause for evaluation, students encounter the elements of LATEX and spend several days
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on the standard analytic approaches to the central force problem. The remainder of our ten-week
term is spent mostly in computationally related activities, including an orientation to MAPLE, a
discussion of numerical algorithms for solving ordinary differential equations (ODEs) and evaluating
integrals, and an introduction to routines built into IDL for solving ODEs and evaluating integrals.
Examples include many of the problems already discussed analytically but also introduce non-linear
and chaotic systems. Sample integrals are found in the evaluation of potential energies, moments
and products of inertia, and electric and magnetic fields and potentials. In the rearrangement that
generated Computational Mechanics from its predecessor, a more traditional intermediate course in
classical mechanics, only Lagrangian mechanics and rigid-body dynamics were omitted to provide
the time for the addition of the computational topics. In the Lawrence curriculum, these two topics
are included in an elective alternate-year, junior/senior elective titled Advanced Mechanics.

Computational Mechanics is a rapidly paced and intensive course. Students in the course
spend quite a bit of time in the CPL. Especially during the first few weeks of the term, when
students are inexperienced with the available computational tools, we arrange for a more experienced
student—often a student who had worked as a research assistant to Professor Cook in the previous
summer—to be available in the CPL for four to six scheduled hours each week to help students
in the course strengthen their wings so that, later in the term, they can be expected to fly more
confidently on their own.

4.1.2 Sample Problems from Assignments

Because they refer to chapters and exercises from the texts, detailed syllabi for this course would not
be particularly meaningful and are not included in this report. Instead, to give a bit of the flavor of
the course, several representative problems assigned during the term are collected in Appendix B.
Note that, after students have learned a bit of LATEX in week 5, they are required to complete their
solutions to one or two problems each week using that publishing tool.

4.1.3 Examinations from a Recent Offering

The examinations given in a recent offering of this course also convey something of the expectations.
In each offering, there are two one-hour examinations and one three-hour final examination. The
second of the two hour examinations typically contains both an in-class, closed-book timed part and
an out-of-class, open-book but closed-classmate, at-the-computer part. The first hour examination
may or may not have an at-the-computer component and, because the enrollment in the course
exceeds the available equipment, the final examination will not involve any work at the computer.
The first hour examination and the final examination, however, may well ask students to lay out
what they would do were they able to access a computer. Copies of the three examinations from
the winter, 2006, offering of Computational Mechanics are contained in Appendix C.

4.2 Computational Physics (Physics 540)

The main objectives of this alternate-year offering are conveyed by its catalog description, which
asserts that it “treats computational approaches to problems in physics with particular emphasis on
finite-difference and finite-element methods for solving partial differential equations as they arise in
electromagnetic theory, fluid mechanics, heat transfer, and quantum mechanics, and on techniques
for graphical visualization of the solutions”. The prerequisite for the course is Computational Me-
chanics, which simple statement hides the several physics and mathematics prerequisites for the
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stated prerequisite course. The text for the course is Professor Cook’s CPSUP, supplemented with
assorted documentation for the various programs used during the course. The development of this
course and the drafting and revising of the portions of CPSUP used in this course were supported
by the 2001 grant from W. M. Keck Foundation.6

4.2.1 Outline of the Course

The daily schedule for Computational Physics is compiled in Table 4.2. Because students spend quite
a lot of time at the workstations in the CPL and because it usually doesn’t take very long in class
to set the stage for lengthy exercises at the computer, this course meets for lecture on average 1.5
times per week. At other times, students work on the regular assignments, which are common to all
students and involve (relatively) straightforward exercises that invoke the computational strategy of
the week. The course begins by orienting students, all of whom have taken Computational Mechanics
but most of whom have not taken a formal course in programming, to the elements of structured
programming, first in pseudocode (which allows focusing on concepts rather than syntactic details)
and then in FORTRAN and IDL.

After spending a day and a half deriving the standard second-order partial differential equa-
tions of mathematical physics (wave equation, diffusion equation, Laplace equation) and discussing
the multitude of physical contexts in which one or another of these equations appears, the course
introduces finite difference methods and applies them to

• discretize the diffusion equation in the spatial coordinate(s) but not the temporal coordinate,
yielding a possibly large set of first-order ordinary differential equations to be solved simulta-
neously subject to appropriate initial and boundary conditions. (The solution of ODEs using
IDL was treated in Computational Mechanics; in Computational Physics, students review use
of IDL but then move to using the large FORTRAN solver LSODE, which gives them their
first experience writing driving programs to invoke existing and well tested subroutines.)

• discretize the wave equation in the spatial coordinate(s) but not the temporal coordinate,
yielding a possibly large set of second-order ordinary differential equations to be solved simul-
taneously subject to appropriate initial and boundary conditions.

• discretize the Laplace equation in all coordinates, yielding a possibly large set of algebraic
equations to be solved by an iterative approach. Students first follow a supplied template to
write programs, either in IDL or FORTRAN or C, to implement the standard iteration for
a variety of different boundary conditions and geometries. Later in the term, students learn
about multigrid approaches to speed the convergence of the iteration and, instead of trying to
code this more difficult approach themselves, encounter again the need to write driving pro-
grams to invoke existing subroutines, this time MUD2SP and MUD3SP from the MUDPACK
package of solvers for elliptic partial differential equations in two and three dimensions.

• discretize the wave and diffusion equations in all coordinates, obtaining a set of algebraic
equations that support the systematic stepping of the initial values indefinitely into the future
and, following templates developed in lectures and the text, write their own IDL or FORTRAN
or C code to solve a number of problems with different initial and boundary conditions.

About 35% of the time in our ten-week term is devoted to this segment of the course.

The final topic of the course, to which about 30% of the time is devoted, addresses finite
element approaches to partial differential equations though, for simplicity of the initial development,

6See the section titled Acknowledgements on page vii in the preface for more details on these grants.
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Day 01 Programming Structures and Strategies

Day 02 Programming in FORTRAN and IDL
Day 03 Analytic/Physical Derivation of PDEs (wave,

diffusion, Laplace, and fluid dynamics equations)
Day 04 Finite Difference Methods (Part I)

Day 05 ASSIGN 1 DUE; Driving Programs for LSODE (Part I)
Day 06 Driving Programs for LSODE (Part II)
Day 07 No class; Work on Assignment 2

Day 08 ASSIGN 2 DUE; Finite Difference Methods (Part II)
Day 09 Finite Difference Methods (Part III)
Day 10 No Class; Work on Assignment 3

Day 11 No Class; Work on Assignment 3
Day 12 Oral presentations on Assignment 3
Day 13 ASSIGN 3 DUE; MUDPACK/Multigrid Techniques (Part I)

Day 14 MUDPACK/Multigrid Techniques (Part II)
Day 15 No Class; Work on Assignment 4
Day 16 ASSIGN 4 DUE; Finite Element Methods (Part I)

Day 17 Finite Element Methods (Part II)
Day 18 Finite Element Methods (Part III)
Day 19 MID-TERM READING PERIOD; No Class

Day 20 No Class; Work on Assignment 5
Day 21 ASSIGN 5 DUE; FEMs with MARC/MENTAT (Part I)
Day 22 FEMs with MARC/MENTAT (Part II)

Day 23 Project Proposal Due; No Class; Work on Assignment 6
Day 24 Oral Presentations on Assignment 6
Day 25 ASSIGN 6 DUE; No Class; Work on Projects

Day 26 No Class; Work on Projects
Day 27 THANKSGIVING VACATION
Day 28 THANKSGIVING VACATION

Day 29 No Class; Work on Projects
Day 30 No Class; Work on Projects
Day 31 Oral Presentations on Projects; Final Paper Due

No Final Examination

Table 4.2: Daily Schedule for Computational Physics. The vertical blocking corresponds to the
weeks of the term, which happened to start on a Friday in the year to which this schedule applies.

the approach is first applied to ordinary differential equations. In both one and two dimensions, the
development of the technique focuses on a general second-order, self-adjoint, linear, inhomogeneous
equation. The overall strategy is laid out, and templates for coding in FORTRAN and IDL are
worked out for specific examples of such equations, and students then modify those templates to
adapt them to other examples. After the technique has been described and practice with very simple
examples completed, the course spends two days describing how to use a pair of commercial programs
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called MARC (a venerable solver of partial differential equations by finite element methods) and
MENTAT[23] (a more contemporary GUI interface for defining problems, automeshing the geometry,
creating the input file for MARC, and examining the output produced by MARC). Students then
complete an assignment that asks them to adapt strategies illustrated in the class discussion of
MARC/MENTAT to slightly different situations.

4.2.2 The Projects

Because they refer to chapters and exercises from the texts, detailed syllabi would not be particularly
meaningful and are not included in this report. Further, no examinations are given in this course.
Beyond the weekly written assignments (which all students complete using LATEX), students also
complete two medium-length projects, the first (a component of Assignment 3) an assigned project
using finite difference techniques and the second (a component of Assignment 6) an assigned project
using finite element techniques. At the end of the term (the entirety of Assignment 7), each student
completes a final, longer project of his or her choice but subject to the instructor’s advance approval.
On each of these projects, each student prepares an oral presentation (15 minutes for the first two
projects; 25–30 minutes for the end-of-term project) delivered to the class and also a written paper.
The general level of the course and the types of problem that students are expected to be able
to address are conveyed by the portions of the assignments describing these three projects. Those
portions of Assignments 3, 6, and 7 are presented in Appendix D.



Chapter 5

CPSUP

The computational components of the Lawrence curriculum and the text which is the topic of this
chapter evolved together, and the text has played an important role in supporting our curricular
developments. Titled Computation and Problem Solving in Undergraduate Physics (CPSUP),1 the
text had its origins in the mid 1980s when, as has been detailed in the previous chapters of this
report, we at Lawrence decided that, to be properly prepared for their future careers in physics, our
majors needed to have a substantial exposure to computational approaches to problems alongside
the more traditional analytic approaches and they needed to have that exposure early enough so
that we could require them to use computational resources in subsequent courses and so that they
would have the knowledge and confidence to use those resources on their own initiative whenever
it seemed to them appropriate to do so. In the first decade of this project, activities focused on
acquiring hardware and software, developing a succession of curricular modifications, and generating
numerous—ultimately 65 or 70—documents that described the features of the operating system and
the several acquired software packages and illustrated how to apply those software packages—both
symbolic and numeric—to selected representative problems drawn from several different subareas of
physics.

By late 1998, it was clear that developments at Lawrence might well be of interest to the
wider community—a realization that prompted the submission of a proposal to the Educational
Materials Development (EMD) track of the CCLI program of the NSF.2 The objectives of the
proposed activity were

• to standardize the format of and expand the extensive library of instructional materials devel-
oped at Lawrence into a flexible publication to support introduction of uses of computational
resources into the upper-level undergraduate physics curriculum;

• to conduct week-long summer workshops for physics faculty from around the country, not only
for evaluation and assessment but also for dissemination; and

• to publish the final product.

The bulk of the writing took place during the summers of 2000, 2001, and 2002 and during a sabbat-
ical year early in that period. In the summers, student assistants drafted solutions to representative
exercises. Thus, the end result is not only a book, which runs to about 900 pages if all components

1Greater detail about CPSUP can be found at the URL http://www.lawrence.edu/dept/physics/ccli. A review
was published in the American Journal of Physics, Vol. 74, No. 7 (July, 2006), pp. 653–655.

2See NSF Grant DUE-9952285 as listed in the section titled Acknowledgements on page vii in the preface.
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are included, but also an accompanying manual containing solutions to nearly 200 representative
exercises.

In this chapter, the text itself is described in fuller detail. While the writing of this text was
prompted by the absence of curricular materials appropriate to what we wanted to do at Lawrence,
the attempt in the final version was to create a text that would have potential use in a variety
of contexts. In this chapter, we state the challenges, describe the structure of the resulting book,
speculate about possible uses of CPSUP, describe the strategy adopted for meeting the publishing
challenge, and outline the future growth of CPSUP.

5.1 The Challenges

That different departments use different hardware and software poses a major challenge to the
writing of a widely useful text. The variety of options and combinations is so great that any single
choice (or coordinated set of choices) is bound to limit the usefulness of the end result to a small
subset of all potentially interested users. The strategy adopted by CPSUP to address this challenge
involves assembling different versions of the basic materials from a wide assortment of components,
some of which—the generic components—will be included in all versions and others of which—those
specific to particular software packages—will be included only if the potential user requests them.
Thus, the specific software and hardware treated in any particular version will be microscopically
“tailor-able” to the spectrum of resources available at the user’s site. One version, for example,
could include the generic components and only the components that introduce the features of and
apply IDL, MAPLE, C, and LATEX while another might include the generic components and the
components that introduce the features of and apply MATLAB, MATHEMATICA, and FORTRAN
(including Numerical Recipes).

A second challenge arises because, even among sites that use the same hardware and
software, some aspects of local environments are still unique to individual sites. Rules of citizenship,
practices and policies regarding accounts and passwords, the features and elementary resources of
the operating system, the structuring of public directories, backup schedules, after-hours access,
licensing restrictions in force on proprietary software, and numerous other aspects are subject to
considerable local variation. CPSUP itself makes no attempt to address this challenge and does
not constrain local options in these matters. Throughout the book, individual users are directed
to a publication called the Local Guide for site-specific particulars. A suggested template for that
guide will be provided. This guide will have to be created at each site, though a template for that
guide—specifically, the guide used at Lawrence—accompanies CPSUP.

Third and fourth challenges are consequences of the microscopic customizability. The
market for any single version is likely to be small. Thus, any potential publisher must be able
not only to assemble and print the desired version on demand (the third challenge) but also (the
fourth challenge) to respond economically to orders for relatively small numbers (5–10) of copies of
a particular version. The author’s way to address these challenges is laid out in Section 5.5.

5.2 The Structure of CPSUP

The essential idea for the book emerged from a recognition that the background for and setup of
particular problems to be addressed with a computer are independent of the specific hardware on
which and software package with which the solutions would be pursued. It ought therefore to be
possible to create a single book that could be produced in various versions. The book would be
assembled from generic components that would be common to all versions and software-specific
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Chapter 1. Preliminaries
Chapter 2. Introduction to IDL
Chapter 3. Introduction to MATLAB
Chapter 4. Introduction to MACSYMA
Chapter 5. Introduction to MAPLE
Chapter 6. Introduction to Mathematica
Chapter 7. Introduction to Programming
Chapter 8. Introduction to Numerical Recipes
Chapter 9. Solving Ordinary Differential Equations
Chapter 10. Introduction to LSODE
Chapter 11. Evaluating Integrals
Chapter 12. Finding Roots

Appendix A. Introduction to LATEX
Appendix B. Introduction to TGIF

Table 5.1: Top-Level Table of Contents for CPSUP.

components, different subsets of which would appear in different versions. At the coarsest level,
that flexibility is illustrated in the top-level table of contents in Table 5.1. Chapter 1 stands alone;
Chapters 2 and 3 introduce the general features of two common array processors; Chapters 4, 5, and
6 introduce the features of three different computer algebra systems; Chapters 7 and 8 introduce a
programming language and the numerical recipes library; Chapters 9, 10, 11, and 12 address several
important categories of computational processing; and the appendices introduce a publishing system
and a program for producing drawings. Any particular version would include at least one of Chapters
2 and 3 and one of Chapters 4, 5, and 6, and Chapters 9, 11, and 12—though these last three would
be assembled with only those components that illustrate the programs included in the selections
from Chapters 2–6. Chapters 7, 8, and 10, the associated sections in Chapters 9, 11, and 12, and
the appendices would be included only if desired by the end user. While the pedagogic objective is
for students to become fluent in the use of a spectrum of computational tools, and the chapters are
organized by program or by computational technique, the focus throughout is on physical contexts.

The top-level table of contents, however, does not accurately convey the full structure of
the text. Chapters fall into two groups. Each of Chapters 2, 3, 4, 5, 6, 8, and 10 and Appendices
A and B, for example, focuses on the basic features of a particular application program. Though
these chapters draw their examples from physical situations and conclude with numerous physically
oriented exercises, they still focus on the capabilities of the application program rather than on
the physics illustrated in the examples. Their format reflects a conviction that students must first
focus attention on the application program itself before being ready to use the program to address
problems in physics. For example, Chapter 3, the table of contents of which is shown in Table 5.2,
is representative of chapters in this group. Specifically, Chapter 3 introduces the main features of
MATLAB, a program for processing arrays of numbers and creating graphical visualizations of one-,
two-, and three-dimensional data sets. The other chapters in this group have a similar structure.
Many of the sections in these chapters are structured as tutorials that lead the reader through the
main features of the corresponding program, are to be studied at a computer, and lean in some
measure on vendor-supplied documentation and on-line help to encourage and guide self-study.

Shown in Table 5.3, the structure of Chapter 11 on evaluating integrals exemplifies the
structure of the chapters in the second group, each of whose members focuses on a particular
computational technique. Presumably, before approaching any particular section in this chapter,
the student would have studied the relevant sections in earlier chapters. The first section in each of
these chapters (here Section 11.1) sets several physical problems, the successful addressing of which
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Section 3.1 Beginning a Session with MATLAB
Section 3.2 Basic Entities in MATLAB
Section 3.3 A Sampling of MATLAB Capabilities
Section 3.4 Properties, Objects, and Handles
Section 3.5 Saving and Retrieving a MATLAB Session
Section 3.6 Loops, Logical Expressions, and Conditionals
Section 3.7 Reading Data from a File
Section 3.8 On-line Help
Section 3.9 M-Files
Section 3.10 Eigenvalues and Eigenvectors
Section 3.11 Graphing Scalar Functions of One Variable
Section 3.12 Making Hard Copy
Section 3.13 Graphing Scalar Functions of Two Variables
Section 3.14 Graphing Scalar Functions of Three Variables
Section 3.15 Graphing Vector Fields
Section 3.16 Animation
Section 3.17 Advanced Graphing Features
Section 3.18 Miscellaneous Occasionally Useful Tidbits
Section 3.19 References
Section 3.20 Exercises

Table 5.2: Sections in the Chapter on MATLAB.

benefits from exploitation of the computational technique with which the chapter deals. Subsequent
sections—here Sections 11.2–11.4—describe how one might use a symbolic tool in application to some
of the problems set in the first section, then—here Section 11.5—describe appropriate numerical
algorithms generically, and finally—here Sections 11.6–11.12—illustrate how those algorithms can
be implemented with a variety of tools. Each chapter concludes—here Section 11.13—with numerous
exercises that students can use to hone their skills. Listings of programs developed in the chapter
are included as appendices to the chapter rather than to the book as a whole. The generic sections—
here Sections 11.1, 11.5, and 11.13—would be included in all versions of the chapter; each individual
instructor would select which of the remaining sections are appropriate to that instructor’s site and
only those sections would be included in a version for that site.

Yet one level further down in the overall structure, Table 5.4 shows the present list of sample
problems for Chapter 11. They range over several subareas of physics and reveal that evaluation of
integrals, perhaps as functions of one or more parameters, plays an important role in many areas of
physics.

5.3 Potential Uses

As illustrated by our uses at Lawrence, CPSUP is suitable for a sophomore course aimed at intro-
ducing physics majors to computational approaches to problems in physics. Through selection of
sections and choice of the examples in mechanics or in electromagnetic theory or . . ., the text would
also function well as a supplement to support introduction of computational approaches in the stan-
dard courses in the intermediate-level program of a typical physics major. Since it is in many places
structured as a tutorial, CPSUP could also support self-studies, independent studies, or tutorials
by individual students interested in learning how to apply computation to physics—and occasional
students at Lawrence have used the materials in that mode. Finally, especially after a student has
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Section 11.1 Sample Problems
Section 11.2 Evaluating Integrals Symbolically with MACSYMA
Section 11.3 Evaluating Integrals Symbolically with MAPLE
Section 11.4 Evaluating Integrals Symbolically with Mathematica
Section 11.5 Algorithms for Numerical Integration
Section 11.6 Evaluating Integrals Numerically with IDL
Section 11.7 Evaluating Integrals Numerically with MATLAB
Section 11.8 Evaluating Integrals Numerically with MACSYMA
Section 11.9 Evaluating Integrals Numerically with MAPLE
Section 11.10 Evaluating Integrals Numerically with Mathematica
Section 11.11 Evaluating Integrals Numerically with FORTRAN
Section 11.12 Evaluating Integrals Numerically with C
Section 11.13 Exercises

Appendix 11.A Listing of trapezoidal.f
Appendix 11.B Listing of trapezoidal.c

Table 5.3: Sections in the Chapter on Integration.

11.1.1. One-Dimensional Trajectories
11.1.2. Center of Mass
11.1.3. Moment of Inertia
11.1.4. Large-Amplitude Pendulum (Elliptic Integrals)
11.1.5. The Error Function
11.1.6. The Cornu Spiral
11.1.7. Electric/Magnetic Fields and Potentials
11.1.8. Quantum Probabilities

Table 5.4: Sample Problems in Section 11.1.

spent some time with some of the chapters, CPSUP should be a useful reference work to have in
one’s library. Broadly, CPSUP is a flexible text that can be used in a variety of ways—including as
the text for stand-alone courses, as a supplement to existing courses, and as the text for tutorials and
self-study—to support introduction of computational approaches to problems in physics alongside
the more traditional analytic approaches.

While the motivation throughout CPSUP lies in and all examples are drawn from physical
contexts, the ultimate objective is for students to develop a sound understanding of the capabilities
of a spectrum of computational tools, of a variety of computational techniques, strategies, and
algorithms, and of the ways in which those capabilities and techniques can be productively exploited
to address serious and substantial problems in physics. Students cannot profitably attempt to run
in this arena, however, before they have learned to walk. While CPSUP draws its examples from
physical contexts and students working their way through the book will learn physics, the book
assumes that the student has completed at least an introductory calculus-based survey course in
physics to justify placing the greater emphasis on the computational tools and techniques. That
focus also leads to a two-fold organization based on the most important capabilities of the tools and
on generally useful computational techniques rather than on the standard subdisciplines of physics.
The typical user will jump around in CPSUP to study only those sections that relate to available
software packages, only those illustrative exercises that apply to the particular subdiscipline of
physics of concern. Though some of the later sections in the book depend on some earlier sections,
the linkages are not particularly tight. Thus, the order of presentation in the book does not compel
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any particular order of treatment in a course or program of self-study.

5.4 Workshops

For purposes of both evaluation and dissemination, the 2000 NSF grant and its 2003 supplement
supported four week-long summer workshops at Lawrence. In each workshop, participants raced
through exercises that familiarized them with the Lawrence computational environment, with the
primary features of IDL or MATLAB (1 day), and of MAPLE or MATHEMATICA (1 day), and
then with applications of these programs to address problems in physics involving ordinary differen-
tial equations (1 day), evaluation of integrals as functions of parameters (1 day), and finding roots
(1 day). A total of seventy faculty members representing sixty-six distinct physics departments
from around the country participated in these workshops and provided feedback on the growing
manuscript. A few served more formally as beta testers, and several are among those who have
continued to use CPSUP in the years after its completion. Dissemination also occurred as a con-
sequence of talks and posters—see a full listing in Appendix A.6—presented at national meetings
and occasional announcements emailed and/or US-mailed to the chairs of departments offering the
bachelor’s degree in physics and others on a growing locally maintained mailing list.

5.5 Addressing the Publishing Challenge

Present-day customizable and print-on-demand publishing is not yet capable of providing the mi-
croscopic section by section customization that CPSUP requires, especially when the number of
copies ordered of any particular version is likely to be small (5–20). Until an on-going search for a
commercial publisher meets with success, the book is being self-published by the author.3 With the
assistance of TEX, LATEX, and an assortment of associated pieces of software, the process of producing
a PostScript file containing the generic components and the selected software-specific components for
any particular version is almost trivially easy. Once all the appropriate LATEX source files containing
the text of the various components (with embedded formatting and indexing commands) have been
created and, in addition, a buyer-specific file containing true/false values for the flags that select the
components to be included is available, the process involves

• running LATEX,
• running LATEX a second time to set the internal cross references and table of contents correctly,
• running LATEX a third time, especially if insertion of the proper internal references in the

second pass causes the pagination to change,4

• running makeindex to generate the file from which the index will be produced,
• running LATEX one last time (third or fourth time) to produce an output file that contains the

proper index, and
• running dvips.

After about five minutes of processor time on a contemporary desktop computer, the PostScript file
for a 400–900 page book is in hand!!! That file is then sent electronically to a nearby commercial
print shop, whose staff members provide it as input to a fascinating machine that digests the file and
produces bound copies as output, all without human intervention. That commercial establishment

3Self-publishing has its drawbacks, but one advantage of the approach and the associated on-demand printing is
that typos, grammatical infelicities, and unclear passages discovered now and then can be corrected immediately and
be right in all subsequent printings.

4The system prints a warning during the second pass if a third pass is necessary.
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Version # Institutions # copies

Class-sized Adoptions

Maverick versions 4 43
IDL-MAPLE+other components 5 38
IDL-Mathematica+other components 5 92
MATLAB-MAPLE+other components 5 39
MATLAB-Mathematica+other components 11 106

TOTAL 30 318

Single Examination Copies Sent

Full 10 10
IDL-MAPLE+other components 7 7
IDL-Mathematica+other components 11 11
MATLAB-MAPLE+other components 16 16
MATLAB-Mathematica+other components 29 29

TOTAL 73 73

Table 5.5: Summary of Distribution of Self-Published Copies of CPSUP from 1 August 2003 to 1
August 2006. Versions contain IDL-MAPLE, IDL-Mathematica, MATLAB-MAPLE, or MATLAB-
Mathematica and various selections from the other options. The few versions containing more than
one of IDL and MATLAB and/or more than one of MACSYMA, MAPLE, and Mathematica are
identified as “maverick versions”. In the column labeled ‘# institutions’, institutions to which
copies were sent in more than one year are tallied once for each year. Beyond the above-enumerated
distribution, seventy copies of the full version (as it existed at the time of each workshop) are in the
hands of those who participated in the workshops, and four different institutions have purchased a
total of seven copies, mostly of the full version, as library acquisitions.

then ships the completed books to the buyer. The process is economical even for as few as half
a dozen copies. Copies can be produced and delivered in about three weeks. Since its essential
completion in the summer of 2003, one or another version—see Table 5.5—of CPSUP has been
adopted for class use at thirty institutions and examination copies, again of one or another version,
have been requested by seventy-five individual physics teachers.

5.6 The Future of CPSUP

The first edition of CPSUP has been essentially complete since late 2003. The search continues for
a commercial publisher with the capacity to provide customization economically for small orders.
In the meantime, self-publication by the author will continue.

As with most large projects, as deadlines loom the scope is scaled back. CPSUP was
originally to include chapters on statistical data analysis and curve fitting, partial differential equa-
tions, Fourier analysis, and image processing. Chapters on Monte Carlo techniques and examples
from thermal and optical physics are candidates for inclusion. Other software packages (particularly
OCTAVE, which is a shareware version of MATLAB, MAXIMA, which is a shareware version of
the now unavailable MACSYMA, and MathCAD) could defensibly be incorporated as options by
including chapters specifically on these packages and by adding sections illustrating the use of these
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packages in other chapters. And other languages like Java, publishing packages beyond LATEX, and
drawing programs beyond Tgif should perhaps be made available as options.

Beyond the flexibility easily to accommodate a variety of choices of hardware and soft-
ware, the structure adopted has also the convenient—perhaps even fortuitous—capability of easy
expansion. With support from the 2001 W. M. Keck Foundation grant, a step in the direction of a
second edition has already been taken with the drafting of at least parts of the chapters that support
the course Computational Physics. Chapter 13 on finite difference and finite element approaches to
partial differential equations, Chapter 14 on the package MUDPACK, which contains FORTRAN
solvers that use multigrid techniques to address elliptic partial differential equations in two and
three dimensions, and Chapter 15 on MARC/MENTAT, which is a commercial pair of programs for
setting up and solving partial differential equations by finite element techniques are well along. As
of December, 2006, the generic parts of these chapters are complete, but the software-specific parts
exist only for the software packages in use at Lawrence.

As the author moves towards retirement from full-time teaching, he expects to devote
more of his efforts to filling in these gaps. Chapters on many other computational topics and on
other software packages may well come into being. Further, once the publishing wrinkles have been
satisfactorily worked out and the structure of the files has been refined and documented, other
authors may be attracted to contributing components on their favorite topics or software packages,
so the book may expand to offer as options a wider and wider spectrum of hardware and software
and to include topics not originally incorporated and, more particularly, topics that go beyond the
knowledge, skill, and/or energy of the initial author. Periodically, reports of progress on these fronts
will be posted on the project website at the URL http://www.lawrence.edu/dept/physics/ccli.



Appendix A

Computational Physics Laboratory

A.1 A Brief History

In 1987, convinced that the scientific careers of its majors would be significantly enhanced by a
broad exposure to computational approaches to problems in physics, the Department of Physics at
Lawrence successfully sought support amounting to about $400,000 from the W. M. Keck Foun-
dation, the National Science Foundation, and several vendors to conduct a pilot project designed
to nurture both the personal initiative and the individual skills to use sophisticated computational
tools intelligently and independently. To this end, we have created the Lawrence Computational
Physics Laboratory (CPL), which gives 45 or so physics majors each year (typically 12 seniors, 13
juniors, 20 sophomores) and five faculty members exclusive 24-hour per day access to an impres-
sive collection of computational hardware and software as well as a library of pertinent manuals,
text books, and locally prepared documents. In addition, we have engaged in faculty development,
and—most importantly—we have embedded numerous computer-based classroom demonstrations
and homework exercises in many of our upper-level offerings, thereby encouraging and supporting
continued independent use both in our junior/senior courses and in senior-level independent studies.
This pilot project has received national attention, being described in several published papers and
invited talks (see later section). Its existence served as the basis for convening a small national
conference (Summer, 1990) at Lawrence (supported by the Sloan Foundation), and it has stimulated
several individual visits to the Lawrence campus.

In 1993, additional funds amounting to about $150,000 were received from the National
Science Foundation and the W. M. Keck Foundation to permit addition of 3D graphics capabilities
and color printing capabilities to the Computational Physics Laboratory initially equipped by the
grants received in 1987 and 1988.

In 1998, grants from Lawrence University allowed us to begin replacing the oldest SGI
equipment with up-to-date SGI equipment. This process will be ongoing, two or three older units
being replaced each year with state-of-the-art equipment.

In early 2000, a grant of $177,026 (supplemented in 2003 with an additional $3781) from the
Educational Materials and Development (EMD) track of the Course, Curriculum and Laboratory
Improvement (CCLI) Program of the National Science Foundation provided support for the collection
of numerous local instructional documents into a text and the conduct at Lawrence of four week-long

35
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summer workshops for physics faculty members from around the United States. The resulting book,
titled Computation and Problem Solving in Undergraduate Physics (CPSUP), is flexible in design.
Through the inclusion of components using the selected software packages, the book can be adapted
to respect the particular hardware and software available at specific institutions. Details can be
found at the project website at the URL http://www.lawrence.edu/dept/physics/ccli.

In December, 2001, the Department received a third grant from the W. M. Keck Founda-
tion. Of the $400,000 total grant, $106,853 was allocated to further development of the CPL. The
primary objectives of this infusion were to introduce a required sophomore course in computation
and mechanics, to introduce an elective junior/senior course in computational physics, and to in-
crease the extent to which computational resources are used throughout the physics curriculum at
Lawrence. In anticipation of increased use generated by those changes in our curriculum, the grant
supported an expansion of the total number of workstations in the laboratory and an upgrading of
the server, the existing workstations, and the printers.

In the remainder of this appendix, we enumerate the current spectrum of hardware and
the most frequently used pieces of software and list the several papers and presentations that have
arisen in the context of developing this resource and writing the text already mentioned.

A.2 Hardware

The first computational physics laboratory, which was constructed in 1988, was equipped with Digital
Equipment Corporation (DEC) VAXstations and a VAXserver running VMS. By the early 1990s,
VMS was fading and UNIX was ascending as the operating system of choice for scientific workstations
and, with outside grant support from the NSF and the W. M. Keck Foundation, we reequipped the
CPL with Silicon Graphics (SGI) Indigo workstations and a Challenge S server, all running IRIX,
SGI’s implementation of the UNIX operating system. Subsequently, these workstations in turn were
replaced by SGI O2 and O2+ workstations and an SGI Origin200 server. In January, 2006, we
officially replaced the SGI hardware with Hewlett-Packard hardware running the LINUX operating
system. Currently, hardware in the CPL includes

• eleven Hewlett-Packard xw9300 workstations, each with a single AMD Opteron 248/2.2GHz
64-bit processor, 1 GB of memory, one 80 GB hard drive, an NVIDIA Quadro FX3400 video
card, and 17” flat-screen monitor and running the Fedora Core 4 implementation of the LINUX
operating system. Two of these machines are in faculty offices; the remaining nine are in the
Computational Physics Laboratory, to which about 50 sophomore, junior, and senior majors
each term have 24/7 access.

• a Hewlett-Packard ProLiant DL380 file server with a single Intel XEON 3.20GHz/1MB 32-
bit processor, 1GB of memory, four 72GB harddrives (two of which mirror the other two),
and one DAT tape drive for backup purposes and running the Red Hat Enterprise 3.x imple-
mentation of the LINUX operating system. This server is housed in the server closet that is
maintained by personnel in Lawrence’s Center for Information Technology (IT), where it is on
an uninterruptable power supply.

• a Hewlett-Packard 4200dtn monochrome network PostScript printer with two paper trays and
a capability for duplex printing when requested.

• a Tektronix Phaser 350 color network PostScript printer.
• nine SGI O2 or O2+ workstations and an SGI Origin200 server, which have officially been

replaced but will remain in use as long as they continue to function. Service contracts are no
longer maintained.
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The CPL is housed in a single, attractively decorated, quiet, well lighted, and inviting room of about
1200 square feet, to which, because we issue keys, upper-division physics majors have 24-hour access.

Personnel in Lawrence’s Department of Instructional Technology Services regularly assist
with overall system maintenance, in particular changing the backup tapes and monitoring the overall
health of the server, but the bulk of the responsibility for maintenance (installing software upgrades,
trouble shooting when system malfunctions occur, . . .) lies with the faculty member in the Depart-
ment who oversees the facility.

A.3 Software

Available software in the Computational Physics Laboratory reflects not only the spectrum of capa-
bilities enumerated in Section 1.1 but also a deliberate focus on professionally-developed, generally
useful packages. In addition to operating systems [UNIX, Linux, Windows-XP), windowing systems
(X, Windows), system utilities, language compilers (C, C++, FORTRAN), graphics support (IDL,
MAPLE, Kaleidagraph), spreadsheet (EXCEL), and text editors (xemacs, nedit, notepad), available
software includes

• MAPLE (from Waterloo MAPLE Software, Inc.)—for doing algebra and calculus symbolically.

• IDL (Interactive Data Language, from ITT Industries, Inc.)—for processing arrays, producing
graphical displays (including animated displays), and processing and displaying images.

• NUMERICAL RECIPES (from Numerical Recipes Software)—FORTRAN and C subroutines
for doing numerical analyses.

• ODEPACK (from the Lawrence Livermore library of public-domain software)—FORTRAN
subroutines for solving a wide variety of ordinary differential equations, both single equations
and (possibly large) systems of equations.

• MUDPACK (from the University Corporation for Atmospheric Research)—FORTRAN sub-
routines for solving elliptic partial differential equations by multigrid methods.

• SPICE (from the University of California Berkeley)—for designing and analyzing electronic
circuits.

• MARC/MENTAT (from MSC Software, Inc.)—for setting up and solving problems in heat
flow, structures, elasticity, and electromagnetics with finite element methods.

• TEX and LATEX (from Stanford University)—for preparing technical manuscripts.

We also have single licenses for MATLAB (from the MathWorks, Inc.) and Mathematica (from
Wolfram Associates, Inc.).

A.4 The CPL Library

Beyond the hardware and software in the CPL, students have access to a small library of printed
materials, including an assortment of software manuals, a selection of books on computational ap-
proaches to problems in physics, and notebooks containing about 60 student-written 5–25 page doc-
uments detailing computationally based studies undertaken by students at Lawrence. While these
documents are still available, many have been superceded by the book CPSUP already mentioned.
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A.5 Network Connections

All workstations in the CPL are connected to the University network and, through a firewall, have
access to the world wide web.

A.6 Publications about the Project

A.6.1 Published Books and Papers

• D. M. Cook, Solutions to Selected Exercises to accompany Computation and Problem Solving
in Undergraduate Physics (Lawrence University Press, Appleton, WI 2004). These solutions
have been published electronically and are available to users of the book from a password-
protected website.

• D. M. Cook, Computation and Problem Solving in Undergraduate Physics (Lawrence Univer-
sity Press, Appleton, WI 2004). Information about this book and details regarding examination
copies and orders can be found at the URL http://www.lawrence.edu/dept/physics/ccli.

• D. M. Cook, “Computers in the Lawrence Physics Curriculum: Part I”, Computers in Physics
11 (3; May/Jun), 240–245 (1997); “..., Part II”, Computers in Physics 11 (4; Jul/Aug),
331–335 (1997).

• D. M. Cook, R. Dubisch, G. Sowell, P. Tam, and D. Donnelly, “A Comparison of Several Symbol
Manipulating Programs: Part I”, Computers in Physics 6(4; Jul/Aug), 411–420 (1992); “...,
Part II”, Computers in Physics 6(5; Sep/Oct), 530–540 (1992).

• D. M. Cook (editor), Computing in Advanced Undergraduate Physics, the proceedings of a
conference held 13–14 June 1990, at Lawrence University. Published in November, 1990, these
proceedings contain 19 papers on uses of computers in undergraduate curricula around the
country and record also the discussions following each paper. The proceedings were widely
distributed to institutions offering bachelors degrees in physics and continue to be occasionally
requested.

• D. M. Cook, “Incorporating Uses of Computational Tools in the Undergraduate Physics Cur-
riculum” (lead paper in the above proceedings).

• D. M. Cook, “Computational Exercises for the Upper-Division Undergraduate Physics Cur-
riculum”, Comput. Phys. 4(3; May/June), 308–313 (1990)

• D. M. Cook, “Introducing Computational Tools in the Upper-Division Undergraduate Physics
Curriculum”, Comput. Phys. 4(2; Mar/Apr), 197–201 (1990)

A.6.2 Invited Talks and Posters

Professor Cook has presented physics colloquia, invited talks, or invited posters at

• the winter meeting of the AAPT, Seattle, WA (January, 2007);
• (poster) the summer meeting of the AAPT, Syracuse, NY (July, 2006);
• the March meeting of the APS, Montreal, QB (March, 2004);
• the International Conference on Computer Science, San Francisco, CA (May, 2001);
• the Washington meeting of the APS, Washington, DC (April, 2001);
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• the winter meeting of the AAPT, San Diego, CA (January, 2001);
• the Physics Revitalization Conference: Building Undergraduate Physics Programs for the 21st

Century , Arlington, VA (October, 1998);
• the summer meeting of the AAPT, College Park, MD (August, 1996);
• the summer meeting of the AAPT, Boise, ID, (August, 1993);
• the summer meeting of the AAPT, Orono, ME, (August, 1992);
• the Davidson College (NC) Conference on Computational Physics, (October, 1991);
• the spring meeting of the Pacific Northwest Association for College Physics, University of

Puget Sound (April, 1991);
• the summer meeting of the AAPT, San Luis Obispo, CA (June, 1989);
• Michigan Technological University (September, 1991);
• University of Wisconsin–Eau Claire (October, 1990);
• Hope College (November, 1989);
• Kansas State University (September, 1989); and
• University of Nebraska (September, 1989).

A.6.3 Contributed Talks and Posters

Professor Cook has presented contributed talks and posters at

• (poster) the summer meeting of the AAPT, Salt Lake City, UT (August, 2005);
• (poster) the summer meeting of the AAPT, Sacramento, CA (July-August, 2004);
• the summer meeting of the AAPT, Sacramento, CA (July-August, 2004);
• the summer meeting of the AAPT, Rochester, NY (July, 2001); and
• the summer meeting of the AAPT, Guelph, ON (July, 2000); and
• the summer meeting of the AAPT, Spokane, WA (July, 1995).
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Appendix B

Problems from Assignments in
Computational Mechanics

B.1 Problems from Assignment 1

Assignment 1 involves a review and embellishment of kinematics and dynamics of translation and
rotation; Newton’s laws; impulse, momentum, work, energy, and power; gravitational and electro-
magnetic forces and friction; and force diagrams. The assignment also includes a tutorial introduc-
tion to the Computational Physics Laboratory (CPL) but no computationally based problems are
assigned.

•• Sample 1.1: Work your way through the “whirlwind tutorial” contained in Section 2 of
the Lawrence Local Guide. This tutorial helps you determine your user name and initial password,
leads you through the login process, helps you change your password, and then guides you through
a few exercises designed to familiarize you with the rudimentary capabilities of software available
in the CPL. There is nothing to hand in for this “problem”, but it must be done by the due date
for this assignment, since subsequent assignments will assume that you are already familiar with
the contents of this tutorial. Note also the schedule when a consultant will be in the CPL to offer
assistance.

•• Sample 1.2: A hemisphere of radius a and total mass M uniformly distributed throughout
its volume with density ρ = M/( 2

3πa3) is located with its center at the origin and its flat surface
in the xy plane. (a) Find the position of the center of mass of this hemisphere. (b) Calculate the
moment of inertia tensor with respect to the x, y, and z axes. Hint : Use spherical coordinates, in
which x′ = r′ sin θ′ cosφ′, y′ = r′ sin θ′ sin φ′, z′ = r′ cos θ′, and dm′ = ρ dv′ = ρ r′2 sin θ′ dr′ dθ′ dφ′.

•• Sample 1.3: The position vector r(t) of a particle or mass m moving in a circle is given by

r = R cos ωt î + R sin ωt ĵ

where R and ω are constants. If the particle has mass m, find as functions of time (a) the angular
momentum L about the point r(0), (b) the force F , and (c) the torque N about the point r(0).
Then, (d) verify that the angular momentum theorem dL/dt = N is satisfied.

•• Sample 1.4: Consider the spool of mass M , inner radius ri, outer radius ro, and moment
of inertia I about its axis. As shown in Fig. B.1, a force F is applied by pulling on a string wound
on the spool. (a) Assuming that the spool rolls without slipping across the floor, show that the

41
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θ

F

ri

ro

M

Figure B.1: Systems for Sample Problem 1.4.

acceleration a —measured positive to the right—of this spool and, in terms of that acceleration, the
frictional force f are given by

a =
T (ro cos θ − ri)

Mro(1 + I/(Mr2
o))

; f = T cos θ − Ma

(b) Determine and defend conditions on θ such that the spool will move to the left. . . . to the right.
(c) Show that there is an angle θ for which the spool remains at rest. (d) At this critical angle, find
the maximum T for equilibrium to be maintained. Assume a coefficient of static friction µs and
remember that the static frictional force is constrained by f ≤ µsN .

•• Sample 1.5: Suppose the total mass M of a planet of radius R is uniformly distributed
throughout the volume of the planet so that the density (mass per unit volume) of the planet is
ρ = M/( 4

3πR3). Show that the force of attraction of this planet for a point particle of mass m
located outside the planet at a distance z from the center of the planet is directed toward the center
of the planet and has magnitude GMm/z2, i.e., show that the force exerted on the particle in these
circumstances can be computed by supposing that the planet is a point particle of mass M located at
the center of the planet. Hint : Choose a coordinate system whose origin is at the center of the planet
and whose z axis is directed from the center of the planet towards the particle so that r = z k̂. In that
coordinate system, a mass element would be located at r′ = r′ sin θ′ cosφ′ î+r′ sin θ′ sinφ′ ĵ+r′ cos θ′ k̂
and have mass dm′ = ρ dv′ = ρ r′2 sin θ′ dr′ dθ′ dφ′. With an element of shrewdness, the resulting
integral over the planet doable. Optional : Redo the calculation assuming that the observation point
is inside the planet, i.e., that z < R.

B.2 Problems from Assignment 2

In doing Assignment 2, students spend much of their time at the computer learning the basic
capabilities of IDL and Tgif and doing exercises that involve, particularly, graphical visualization of
assorted functions. They also learn that Newton’s laws generate differential equations and deduce
those differential equations for several physical systems.

•• Sample 2.1: Consider two circular disks, each of radius R, located with their centers on
the z axis such that their planes are parallel to the xy plane. Let the first disk have its center
at the point (0, 0, b/2) and the second at the point (0, 0,−b/2). If the top disk carries a uniform,
constant charge density σ and the bottom disk carries a uniform, constant charge density −σ, the
electrostatic potential at the point (0, 0, z) is given by

V (z) =
σ

2ε0
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Obtain graphs of V (z)/(σR/2ε0) versus z/R for various values of b/R and write a paragraph de-
scribing these graphs. Hint : Remember the IDL function abs.

•• Sample 2.2: The Planck radiation law gives the expression

u(λ, T ) =
8πch

λ5

1

ech/(λkT ) − 1

for the distribution of energy in the radiation emitted by a black body. Here, c is the speed of light,
h is Planck’s constant, k is Boltzmann’s constant, λ is the wavelength of the radiation, and T is the
absolute temperature. Using appropriate dimensionless units, plot this function (a) as a function
of λ for several T and (b) as a surface over the λT -plane. Write a paragraph about the way the
peak changes in position, height, and width as T changes. Hint : Choose a reference wavelength
λ0 arbitrarily and recast the expression in terms of the dimensionless variable λ = λ/λ0. Then,
note that T0 = ch/(λ0k) has the dimensions of temperature and re-express the temperature T in
terms of the dimensionless quantity T = T/T0. (You might find it informative to evaluate T0 for
λ0 = 550 nm.)

B.3 Problems from Assignment 3

Assignment 3 is particularly long and extends over two weeks. It covers the topics identified for
weeks 3 and 4 in Table 4.1 and has only limited incorporation of the computer. It is followed by the
first hour examination. (See Appendix C.)

•• Sample 3.1: Find the minimum velocity of impact of a projectile on the surface of the
moon and the speed with which the projectile must be launched upward from the earth if it is to
arrive at the moon with this minimum velocity. Hint : Sketch a graph of the potential energy of the
projectile along a line from the earth to the moon, perhaps even use IDL to generate a careful graph
of that function.

•• Sample 3.2: The Lennard-Jones potential energy ULJ(x) is important in chemical bonding
theory and is given by

ULJ = 4ε

(

σ12

x12
− σ6

x6

)

or
ULJ

ε
= 4

(

1

x̄12
− 1

x̄6

)

where ε and σ are constants and r̄ = r/σ. (a) Sketch a graph of this potential energy. (b) Use IDL
to obtain a careful graph of ULJ(x)/ε versus x/σ. (c) Locate any equilibrium points, (d) determine
which ones are stable, and (e) find the frequency of small oscillations about about any equilibrium
point that is stable.

•• Sample 3.3: The equations of motion for a projectile moving in the xz plane in air under
the downward gravitational attraction of the earth and subject to a linear viscous damping force are

m
d2x

dt2
= −b

dx

dt
; m

d2z

dt2
= −mg − b

dz

dt

(a) Show that

x(t) =
mvx0

b

(

1 − e−bt/m
)

; z(t) =

(

m2g

b2
+

mvz0

b

)

(

1 − e−bt/m
)

− mg

b
t

if the projectile starts at the origin at t = 0 with an initial velocity v(0) = vx0 î + vz0 k̂. (b) Show
that the highest altitude reached by this projectile is given by

zmax =
mvz0

b
− m2g

b2
ln

(

1 +
bvz0

mg

)
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Hint : The highest point occurs when vz(t) = 0. (c) Expand this result for zmax in a power series in
b, keeping terms up to first order in b, and verify that the zeroth order term gives the correct result
in the absence of damping. Note the expansion ln(1 + x) = x − x2/2 + x3/3 + · · ·, which is valid
when x � 1.

•• Sample 3.4: A object of mass m passes through x = 0 at t = 0 with a positive velocity
v0. From that point, the object experiences only a velocity-dependent force that is given either by
(a) F = −bẋ or (b) by F = −cẋ2. For each case, find v(x), v(t), and x(t) and then comment on the
limits of each of these expressions as t becomes large.

•• Sample 3.5: Consider a system of two identical blocks of mass m moving along a straight
line on a horizontal frictionless surface. Let each block be connected to the wall at its end of the line
by a spring of constant k and let the blocks be connected to each other with a spring of constant k ′.
(a) Find the normal modes of oscillation, the natural frequencies of those modes, and the normal
coordinates for the system; (b) draw graphs of the two natural frequencies (in units of ω0 =

√

k/m
versus the strength of the coupling spring (in units of k′/k; (c) find x1(t) and x2(t) explicitly if
x1(0) = x10 and x2(0) = 0, and (d) use IDL to draw graphs of x1/x10 and x2/x10 versus ω0t for
several different values of k′/k, carrying your graphs far enough in time to embrace 20 or 30 cycles
of motion at the frequency ω0.

B.4 Problems from Assignment 4

Assignment 4 is devoted to a study of central forces and the planetary problem. This assignment
also introduces students to LATEX, and students are expected to use LATEX to prepare their solutions
to a couple of the problems on this and all subsequent assignments.

•• Sample 4.1: Consider a particle moving in a circular orbit under the inverse square
gravitational force, for which f(ρ) = −GMm/ρ2. (a) Show that the period of this motion is

given by T = 2π
√

ρ3
eq/GM . (b) Show that the the speed of the particle in its orbit is given by

vtan =
√

GM/ρeq. (c) Suppose the particle is orbiting the earth, whose radius is Re. Show that
these relationships reduce to

T = 2π

√

Re

g

(

ρeq

Re

)3/2

; vtan =
√

gRe

√

Re

ρeq

where g is the acceleration of gravity on the earth. (d) Find expressions for the period T graze and
the orbital speed vgraze

tan for a particle whose orbit grazes the surface of the earth, and then determine
these quantities numerically, expressing the period both in seconds and in hours and the speed both
in meters per second and in miles per hour. (e) Find the radius of the orbit whose period is 24 hours
and the speed of the particle in that orbit, expressing the first as a numerical multiple of Re and
the second as a numerical multiple of vgraze

tan . (f) Use IDL to obtain careful graphs of T/T graze and
vtan/vgraze

tan versus ρeq/Re.

•• Sample 4.2: Explore the motion of a particle of mass m when it moves under the influence
of the potential energy U(ρ) = Kρ4, where K is a positive constant. Determine (a) the energy and
angular momentum of a circular orbit of radius a; (b) the period of that special orbit; (c) and the
period of small radial oscillations about that special orbit.

•• Sample 4.3: Using the orbital equation, find the central force necessary to produce an
elliptical orbit with the force center at the center of the ellipse. Hints: In Cartesian coordinates, the
equation of an ellipse with its center at the origin is (x/a)2+(y/b)2 = 1. Recognizing that x = ρ cos φ
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and y = ρ sin φ, begin by showing that this ellipse is described by the equation u2 = A cos2 φ+B sin2 φ
in polar coordinates. Here, A = 1/a2, B = 1/b2, and u = 1/ρ. Answer: f(ρ) = Kρ, where K is a
constant.

•• Sample 4.4: Show that the eccentricity ε, the square of the angular momentum L, and
the energy E for an elliptical orbit in an inverse square force F = −α/ρ2 are given in terms of the
perigee ρp and apogee ρa by

ε =
ρa − ρp

ρa + ρp
; L2 = 2mα

ρaρp

ρa + ρp
; E = − α

ρa + ρp

B.5 Problems from Assignment 5

Assignment 5 provides an introduction to the general capabilities of MAPLE and then addresses the
use of MAPLE to solve ordinary differential equations.

•• Sample 5.1: The Legendre polynomials Pn(x), which are valid and useful over the interval
−1 ≤ x ≤ 1, can be defined in many ways. They emerge as the coefficients in the Taylor expansion
of the generating function

g(x, t) =
1√

1 − 2xt + t2
=

∞
∑

n=0

Pn(x) tn

Alternatively, they can be determined from the recursion relationship

(2n + 1)xPn(x) = (n + 1)Pn+1(x) + nPn−1(x)

provided we include the first two P0(x) = 1 and P1(x) = x to get started. Yet again, they can be
found from application of multiple differentiation as implied by Rodrigues’ formula

Pn(x) =
1

2n n!

dn

dxn

(

(x2 − 1)n
)

a. Use the generating function and MAPLE’s capabilities for evaluating Taylor series to find the
first half-dozen Legendre polynomials, extracting each as an expression bound to a variable.

b. Start by binding the value 1 to P[0] and the value x to P[1]. Then, using the recursion
relationship, find the next several Legendre polynomials.

c. Find the first half-dozen Legendre polynomials by using the command diff to evaluate Ro-
drigues’ formula. Hint : You might find that using a loop would simplify your approach.

d. Be clever and, using either matrices or loops constructed in MAPLE, find the values of all of
the integrals

∫ 1

−1

Pn(x)Pm(x) dx

where n and m take on independently the values 0, 1, 2, 3, 4, 5. (There are 36 integrals to
be evaluated. Try to be efficient in your coding, and remember the command map, which will
be useful in constructing a single statement that evaluates the integral of each element in a
multi-element structure.)

e. Within MAPLE, obtain graphs of the first six Legendre polynomials over the interval −1 ≤
x ≤ 1.
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f. It is known that a function f(x) defined over the interval −1 ≤ x ≤ 1 can be expanded in a
series of Legendre polynomials of the form f(x) =

∑

an Pn(x) where the coefficients an are
given by

an =
2n + 1

2

∫ 1

−1

f(x)Pn(x) dx

Find the first six coefficients for the expansion of the function f(x) = 0 when −1 < x < 0 and
f(x) = 1 when 0 < x < 1. Then, construct the (partial) series representing this function and
obtain a graph of that approximation to compare with the graph of the original function.

g. MAPLE actually knows quite a bit about many of the important special functions of math-
ematical physics. In particular, the package orthopoly can be loaded with the command
with(orthopoly) and is described fully in the MAPLE manuals. Take a look at that docu-
mentation and then use the function P in that package to determine the first several Legendre
polynomials.

•• Sample 5.2: Using MAPLE, find complete (symbolic) solutions to each of the following
problems, and use MAPLE also to verify that the solutions you obtain actually do satisfy the original
ODE and initial conditions.

a.
d2x

dt2
= a, x(0) = x0, v(0) = v0, where a is constant, i.e., find position as a function of time

for a particle moving under the action of a constant force and launched with arbitrary initial
conditions.

b. m
d2x

dt2
= −eE0 cos(ωt + θ), x(0) = x0, v(0) = v0, i.e., find position as a function of time for

a charged particle moving under the action of a sinusoidal force and launched with arbitrary
initial conditions.

c. m
d2x

dt2
= −mg + b

(

dx

dt

)2

, x(0) = 0, v(0) = 0, i.e., find position as a function of time for a

particle released from rest at the origin and allowed to fall freely under the action of gravity
and a viscous retarding force proportional to the square of the speed.

d. the differential equations for x(t) and z(t) in P4.50.1

•• Sample 5.3: Consider a system of two objects of different masses m1 and m2 connected by
a spring of constant k. Suppose the blocks are constrained to move along a straight line. Measuring
from an arbitrarily selected origin on that line, let the coordinates of the particles be x1 and x2,
respectively. The equations of motion for this system are

m1
d2x1

dt2
= k(x2 − x1) ; m2

d2x2

dt2
= −k(x2 − x1)

Let the system be put into motion with arbitrary initial conditions

x1(0) = x10 ; x2(0) = x20 ;
dx1(0)

dt
= v10 ;

dx2(0)

dt
= v20

Using MAPLE, solve this initial-value problem for x1(t) and x2(t) and then examine the behavior
of the particular quantities

X(t) =
m1x1(t) + m2x2(t)

m1 + m2
and Y (t) = x2(t) − x1(t)

which are, respectively, the position of the center of mass of the system and the position of the
second block relative to the first block.

1P4.50 is the problem presented in this appendix as Sample 3.3.
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B.6 Problems from Assignment 6

Assignment 6 deals with the numerical solution of the ordinary differential equations that appear in
classical mechanics.

•• Sample 6.1: In a previous problem,2 we found that the potential

U(x) = −U0
a2(a2 + x2)

8a4 + x4
or

U(x)

U0
= −1 + x2

8 + x4

where x = x/a admits a variety of motions (bound motion in either the left or the right well when
− 1

4 ≤ E/V0 ≤ − 1
8 ; bound motion over the whole well when − 1

8 ≤ E/V0 ≤ 0; unbound motion when
E/V0 > 0). Find the equation of motion for a particle in this well, cast it in a suitable dimensionless
form, and then explore each of the different types of motion possible. Be sure to look both at graphs
of x and v = dx/dt versus t and—especially for the periodic motions—at the phase plane plots, v
versus x—all in suitable dimensionless units. It might be interesting to examine period as a function
of energy for this oscillator. Write several paragraphs describing and presenting evidence for your
discoveries. Hint : Perhaps a suitable dimensionless time would be t = ω0t, where ω0 is the frequency
of small amplitude oscillations when the particle is confined to one side of the well.

•• Sample 6.2: Explore the behavior of the Van der Pol oscillator described in dimensionless
form by the equation

d2x

dt
2 =

dx

dt
(1 − x2) − x

obtaining graphs of position versus time, velocity versus time, and velocity versus position (the
phase-plane trajectory), each for several different initial conditions. Convince yourself that the final,
steady-state path in the phase plane is independent of the initial conditions.

B.7 Problems from Assignment 7

Assignment 7 introduces the use of MAPLE for symbolic and IDL for numerical evaluation of
integrals and then applies those capabilities to several physical contexts, not all of them originating
in classical mechanics.

•• Sample 7.1: Consider a surface in the xy plane having uniform mass density σ and having
the shape of a cardioid given in polar coordinates by the function r(φ) = a(1−cos φ). Using symbolic
integration, find (a) the center of mass of this object, (b) the moment of inertia tensor of this object
about the x, y, and z axes, and (c) the radius of gyration about the z axis. Hints: The (vector)
position Rcm of the center of mass and the ij element of the 3 × 3 moment of inertia tensor I are
defined by

Rcm =

∫

r dm
∫

dm
; Iij =

∫

[(x2
1 + x2

2 + x2
3)δij − xixj ] dm

where x1, x2, and x3 symbolize x, y, and z, respectively; δij is the Kronecker delta, which has the
value 1 when i = j and the value 0 otherwise; and the radius of gyration is defined in the text.

•• Sample 7.2: The n-th order Bessel function can be defined by the integral

Jn(x) =
1

π

∫ π

0

cos(nθ − x sin θ) dθ

2This problem is not included in this appendix.
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By evaluating this integral numerically as a function of x for different values of n, obtain graphs of
J0(x), J1(x), and J2(x) over the range 0 ≤ x ≤ 10.

•• Sample 7.3: A circular current loop of radius a lies in the xy-plane with its center at the
origin and carries a current I ′ counterclockwise as viewed from a point on the positive z axis. The
magnetic field at a point in the xz plane is given by

B(x, z)

µ0I ′/2πa
= a2

∫ π

0

z cosφ′ î + (a − x cos φ′) k̂

[x2 + z2 + a2 − 2ax cos φ′]3/2
dφ′

Explore both components of this magnetic field numerically as functions of x/a for various values
of z/a, including z/a = 0.0 (which will require some creativity for dealing with the point x/a = 1.0,
at which the integrand diverges at one point in the range of the integration variable).



Appendix C

Examinations from Computational
Mechanics

C.1 Hour Examination #1 – 1 February 2006

Physics 225: Computational Mechanics Hour Examination 1 1 February 2006

This examination is a closed book examination, but calculators, integral tables, and CPSUP are
allowed. Answer all questions, and be sure to include enough narrative with each solution so that I
can understand easily what you were thinking as you solved the problem. The examination is to be
completed by the end of the class period. Each of the three questions will receive the same weight
in the grading. The following information may—or may not—be useful.

U(r) = U(rref) −
∫

r

rref

F(r′) • dr′ ; vtan = ωr ; N = Ftanr

Iα =
dL

dt
= N ; α =

dω

dt
=

d2φ

dt2
; ω =

dφ

dt
; L = Iω ; Krot =

1

2
Iω2

QUESTION 1. Torque Depending Only on Time

An object of mass m moves in a circular path of
radius d lying in the xy plane and centered at the
origin. The object experiences a sinusoidally vary-
ing torque given by N(t) = N0 sinω0t. Thus, with
φ(t) being the angular position of the object at
time t, the equation of motion is

I
d2φ

dt2
= N0 sin ω0t

where I = md2 is the moment of inertia of the
object about the z axis. Suppose that, at t = 0,
the object is at rest [ω(0) = dφ/dt|t=0 = 0] at the
angular position for which φ(0) = 0, i.e., at rest

at the point r = d î on the positive x axis.

x

y

φ

m
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(a) By solving the above differential equation subject to the given initial conditions, show that

i. ω(t) =
dφ

dt
=

N0

Iω0

(

1 − cos ω0t
)

and ii. φ(t) =
N0

Iω2
0

(

ω0t − sin ω0t
)

(b) Show that the power input P (t) to this object by the applied torque is given by

P (t) =
N2

0

Iω0
sinω0t

(

1 − cosω0t
)

Hint : Convert the expression P (t) = F • v = Ftan(t) vtan(t) into the descriptive terms appro-
priate to rotation.

(c) Show that the result in part (b) is dimensionally correct, i.e., that the quantity N 2
0 /(Iω0) has

the units J/s (Joules/second).

QUESTION 2. Conservation of Energy

Suppose a particle of mass m moves along the positive x axis under the action of an attractive force
that varies inversely as the fourth power of its position from the origin, i.e.,

F = −F0
a4

x4
î

where a —a length—and F0 —a force—are positive constants. Suppose that, initially, the particle is
projected toward increasing x with speed v0 from the point x = a.

(a) Declaring that the potential energy shall be zero at x = ∞, show that the potential energy
associated with this force is given by

U(x) = −F0a
4

3x3

(b) Write out the IDL coding that will generate the graph in Fig. C.1 showing U(x)/(F0a) versus
x/a. Pay attention not only to the curve but also to the labels, ranges on the axes, etc. Note: I
am asking only for coding that will produce the graph on the screen, not for coding to produce
printed hard copy of the graph.

(c) With what minimum speed should the particle be projected from x = 1
2a if it is to escape

altogether from the influence of the force? Hint : Apply conservation of energy.
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Figure C.1: Figure for Question 2, Part (b).

QUESTION 3. Dynamics of a Non-trivial System

m

m

k

I

R

x=0 x

A system consists of a spring of constant k and two blocks, each of mass m. One end of the spring
is attached to a wall and the other end is attached to one of the blocks, which slides without friction
on a horizontal table. A massless, inextensible, and perfectly flexible rope runs from the other side
of this first block, over a pulley of radius R and moment of inertia I about its axis of rotation,
and to the second block, which hangs from the rope over the pulley and edge of the table. Let the
position of the block on the table be measured from its location when the spring is neither stretched
nor compressed, ignore friction in the bearings of the pulley, and assume the rope and pulley move
together without slipping.



52 APPENDIX C. EXAMINATIONS FROM COMPUTATIONAL MECHANICS

(a) Draw and label a complete force diagram for each of the three main objects in this system
(each block and the pulley).

(b) Describe briefly in words each force to which you give a symbol on the diagram.

Given sufficient time, you could write down the consequences of Newton’s second law, identify
all necessary auxiliary conditions, and manipulate them to conclude that the primary equation of
motion for this system is

meff
d2x

dt2
+ kx = mg (C.1)

where meff = 2m + I/R2. (Note: I did not ask you to deduce this equation.)

(c) Starting with Eq. (C.1), and assuming that x(0) = x0 and v(0) = v0, show that the quantity

1

2
meffv2 +

1

2
kx2 − mgx

is conserved. Hint : Remember that d2x/dt2 = v dv/dx.

REMINDER: Pledge.

C.2 Hour Examination #2 – 1 March 2006

Physics 225: Computational Mechanics Hour Examination 2 1 March 2006

This examination has two parts. Part I is closed book, but calculators and integral tables are
allowed; it is to be completed by the end of the class period. Part II, which will be given to you
when you turn in Part I, is open book but closed classmate (and closed other physics majors). To
complete Part II, you will need to use the facilities of the CPL. Part II is to be turned in no later
than 5:00 PM on Friday, 3 March.

Answer all questions, and—both in Part I and in Part II—be sure to include enough nar-
rative with each solution so that I can understand easily what you were thinking as you solved the
problem. The weight to be given each question in the grading is shown with the question. In total,
the in-class portion, which contains two questions, will count 40% and the out-of-class portion, which
also contains two questions, will count 60%.

PART I: IN-CLASS CLOSED-BOOK PORTION

Possibly useful information:

U = − Gm1m2

|r2 − r1|
; |F| =

Gm1m2

|r2 − r1|2

QUESTION 1: Motion near an Asteroid (weight=20%)

Suppose an astronaut of mass m is located initially at the
surface of a spherically symmetric asteroid of mass M and
radius R0. Suppose, further, that she is capable of launch-
ing herself from a point on the surface of the asteroid with
a velocity of magnitude v0 in any direction.

(a) Apply conservation of energy to show that the es-
cape velocity from this asteroid is given by vesc =
√

2GM/R0.

R0

v
0
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(b) By matching centripetal to gravitational forces, show that, if the astronaut launches herself
along a tangent to the surface of the asteroid, the particular value of v0 that will launch her
into a circular orbit of radius R0—i.e., a grazing orbit—is given by vcircle = vesc/

√
2.

(c) Suppose now that the astronaut’s launch speed satisfies vcircle < v0 < vesc, so that she can
launch herself into an elliptical orbit by “jumping” at speed v0 along a path that is tangent to
the asteroid’s surface at the point of launch. Find an expression for the eccentricity ε of the
astronaut’s orbit. Your answer may involve v0, vcircle, and R0 but not G, m, and M . Hints:
(1) Remember that the orbit in an inverse-square gravitational force is given by

r(φ) = R0
v2
0/v2

circle

1 + ε cos φ

where φ is measured from the line from the center of the asteroid to the perigee, and (2) the
astronaut’s initial point is at the perigee of the orbit.

QUESTION 2: Orbits in Inverse Cube Force (weight=20%)

Consider a particle of mass m moving in the xy plane with position and velocity given in Cartesian
coordinates by

r = x î + y ĵ ; v = vx î + vy ĵ

Suppose that the particle moves under the influence of an attractive inverse cube force so the equation
of motion—Newton’s second law— is given by

m
dv

dt
= m

d 2r

dt2
= F = −K

ρ3
r̂ = − K

(x2 + y2)3/2
r̂

In these expressions, K is a positive constant. In a coordinate system whose origin coincides with
the force center, whose x axis runs from the force center through the initial position of the particle,
and whose y axis lies in the plane of the orbit, the initial position of the particle has only an x
component but the initial velocity may have both x and y components. To set a notation, take

r(0) = a î ; v(0) =
dr

dt
(0) = vx0 î + vy0 ĵ

where a, vx0 and vy0 are (known) constants.

(a) Show that the angular momentum L of this particle about the origin is conserved. Hint :
Evaluate dL/dt where L = r × mv.

(b) Find the x and y components of the equation of motion and then, introducing the dimensionless
coordinates x = x/a and y = y/a, show that

d2x

dt
2 = − x

(x2 + y2)2
;

d2y

dt
2 = − y

(x2 + y2)2

Along the way, of course, you will have to deduce the relationship between t and t.

REMINDER: Pledge.
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PART II: OUT-OF-CLASS OPEN-BOOK PORTION

In this portion of the examination, you may consult any printed or on-line materials that are available
to you but consultations with your classmates and other physics majors are off-limits. This portion
is to be completed and handed in by 5:00 PM on Friday, 3 March.

QUESTION 3: Symbolic Approach with MAPLE (weight=30%)

An object of mass m moves in a circular path of
radius d lying in the xy plane and centered at the
origin. The object experiences a sinusoidally vary-
ing torque given by N(t) = N0(1−cos ω0t). Thus,
with φ(t) being the angular position of the object
at time t, the equation of motion is

I
d2φ

dt2
= N0(1 − cos ω0t)

where I = md2 is the moment of inertia of the
object about the z axis. Suppose that, at t = 0,
the object is at the angle φ(0) = 0 and is at rest,
i.e., it has angular velocity ω(0) = dφ/dt|t=0 = 0.

x

y

φ

m

Using MAPLE,

(a) Solve this equation subject to the given initial conditions to find φ(t) and ω(t) = dφ(t)/dt.

(b) Verify that the solution you have obtained indeed satisfies both the original differential equation
and the initial conditions imposed on it.

(c) Remembering that the power input to this system is given by P (t) = N(t)ω(t), find an
expression for P (t) and plot a graph of P (t)/(N 2

0 /Iω0) versus ω0t.

Submit your solution to this question by printing the MAPLE notebook in which you work the
solution out. Be sure in your submitted output that your argument moves directly and smoothly
from the starting point to the desired end results, that your notebook reads linearly down the page,
and that each step in the solution is carefully motivated/explained/defended. Do not include all the
statements that you try before finding the ones that work. I want to read a clear presentation of
your approach, unencumbered by false starts and error messages.

QUESTION 4: Numerical Approach with IDL (weight = 30%)

In the closed-book portion of this examination, you convinced yourself that, in Cartesian coordinates,
the orbit of a particle under an inverse cube central force was described in dimensionless form by
the equations

d2x

dt2
= − x

(x2 + y2)2
;

d2y

dt2
= − y

(x2 + y2)2

Use ludiffeq 23 and/or ludiffeq 45 to examine the behavior of this system when the initial
conditions are given by

x(0) = 1 ; vx(0) = 0 ; y(0) = 0 ; vy(0) = vy0

You will need to give attention to
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• Creating the appropriate pro-file to define these equations for ludiffeq 23 or ludiffeq 45.

• Using (ludiffeq 23 and/or ludiffeq 45) and plot to generate the solution and a graph of
the orbit for vy0 = 1 (which should produce a circular orbit) and for two other values of this
velocity, one slightly larger than 1 and the other slightly smaller than 1. In each case, choose
the time interval over which you generate the solution wisely to show enough of the orbit to
reveal its full character.

• Verifying that the solutions you ultimately accept are accurate at least to the resolution of the
graphs—and presenting evidence to support your contentions in this regard. Remember that
you have both ludiffeq 23 and ludiffeq 45 at your disposal, that each of these routines has
a keyword tol, and that energy and angular momentum given in dimensionless form by

E = v2
x + v2

y − 1

x2 + y2 ; L = x vy − y vx

are—or should be—conserved.

Submit your solution to this question by creating a LATEX document that includes (1) sufficient
narrative and sufficient sample IDL code to explain your approach and (2) the graphs associated
with your presentation of your solution.

C.3 Final Examination – 15 March 2006

Physics 225: Computational Mechanics FINAL EXAMINATION 15 March 2006

This examination is a closed book examination, but reference to CPSUP is permitted and, unless
otherwise noted, calculators and integral tables are allowed. The examination is designed to take
no more than three hours. Each student is to answer Question 1 and any four of the remaining five
questions (Questions 2, 3, 4, 5, and 6). In all cases, be sure to include enough narrative with each
solution so that I can understand easily what you were thinking as you solved each problem. In the
grading, Question 1 will carry weight 3 and each of the remaining questions will carry weight 2.

Possibly useful information:

U = − Gm1m2

|r2 − r1|
; U =

1

2
kx2 ; U = mgz ; K =

1

2
mv2 =

1

2
Iω2

(1 + ε)q = 1 + qε + . . . ; MRCM =
∑

i

miri ; W =

∫

F • dr

REMEMBER: You must answer Question 1.



56 APPENDIX C. EXAMINATIONS FROM COMPUTATIONAL MECHANICS

QUESTION 1: Gravitation; Small Amplitude Oscillations

x

y

aa

y MM

m

Two objects, each of mass M , are fixed on the x axis, one at x = +a and the other at x = −a.
Another object of mass m is constrained to stay on the y axis but is free to move along that axis.

(a) Show that, when m is located at the point r = y ĵ, the potential energy of m is given by

U(y) = − 2GMm

[a2 + y2]1/2

(Don’t work too hard. I am not asking you to evaluate an integral of the force, merely to use
the known potential energy of a mass near a second mass to construct the potential energy in
the present situation.) Were you to draw a graph of this function, I would hope you would
deduce something like the graph at the end of this question. (Note that I did not ask you to
generate—or even defend—this graph.)

(b) Locate the one equilibrium point and classify it as stable or unstable on the basis of features
of the potential energy.

(c) Find the y component of the force on m by evaluating an appropriate component of the gradient
of the potential energy, and show that the equation of motion of m is

d2y

dt2
= − 2GMy

(a2 + y2)3/2

(d) Examine the equation to which this equation of motion reduces when y � a, i.e., when y2 can
be ignored relative to a2, and determine the frequency of small amplitude oscillations about
the equilibrium point.

Now, if you introduce the dimensionless coordinates y = y/a and t =
√

2GM/a3 t, you will find that
the equation of motion becomes

d2y

dt
2 = − y

(1 + y2)3/2

(Note that I did not ask you to deduce this form.)

(e) You wish to draw a graph of the position y of this object as a function of time t when y(0) = 1.0
and vy(0) = 0. The ODE does not have an analytic solution, so you will have to invoke IDL
and use a numerical method. Choose ludiffeq 23. Describe what you would do to
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• effect that solution,
• obtain the desired graph, and
• assess the accuracy of your solution.

In particular, be specific about the coding that you would use, both to define the ODE for
IDL and to generate and plot the solution. Note: I am asking only how you would produce a
graph on the workstation screen, not how you would produce hard copy of the graph.

REMEMBER: You are to answer any four of the remaining five questions.

QUESTION 2: A Projectile in a Strange Atmosphere

A projectile is fired from the origin with an initial
velocity v0 = vx0 î + vz0 k̂ into a strange atmo-
sphere in which air resistance acts only horizon-
tally. The projectile thus experiences the forces
shown in the figure to the right. You may assume
that the projectile remains in the xz plane.

(a) Apply Newton’s second law to determine the
equations of motion for this projectile.

z

x

mg

bvx

v0

(b) State the initial conditions to be imposed on the solution to the equations in part (a).

(c) Solve the equations obtained in part (a) subject to the initial conditions you identified in
part (b) to show that

x(t) =
mvx0

b

(

1 − e−bt/m
)

; z(t) = −1

2
gt2 + vz0t



58 APPENDIX C. EXAMINATIONS FROM COMPUTATIONAL MECHANICS

(d) Explain briefly what is meant by the range of a projectile and then find an expression for the
range of this projectile.

QUESTION 3: Orbits in Inverse Square Forces

In previous work, we have learned that a satellite of mass m orbiting a planet of mass M and radius
R is an ellipse characterized by eccentricity ε and constant angular momentum L. If we choose a
coordinate system in which the force center is at the origin and the angle φ is measured from the
perigee (point of closest approach), the radial coordinate ρ of the orbit is given as a function of φ
by the equation

ρ(φ) =
L2/(m2GM)

1 + ε cos φ

where ε = 0 for a circular orbit and 0 < ε < 1 for elliptical orbits.

(a) For a general elliptical orbit, suppose that at perigee the speed of the satellite is vp and its
distance from the force center is ρp.

i. Starting with the definition L = r × mv, show for that orbit that L = mvpρp.

ii. Using the result just obtained, show that,

ρ(φ)

R
=

(

vp

vgraze

ρp

R

)2

1 + ε cos φ

where, as we have deduced in earlier work, vgraze =
√

GM/R.

(b) Now, suppose a satellite is initially in the specific circular orbit of radius 4R. (Don’t overlook
the 4 .

i. By requiring the gravitational force to provide for the requisite centripetal acceleration,
show that the speed of this satellite is given by vs = 1

2 vgraze.

ii. At a fateful instant, a very short but powerful burn of a rocket boosts the speed of this
satellite to 2

3 vgraze, thus putting the satellite into a new (elliptical) orbit whose perigee
is at the point where the boost was applied. Find

• the eccentricity ε of this new orbit.

• the radial coordinate of the new orbit at apogee (point of furthest distance from the
force center).

The first of these quantities will be a pure number; the second can be left as a multiple
of R.

QUESTION 4: Center of Mass; Integration with MAPLE and IDL

A slender rod of length l (assume l > 0) lies along the x axis with one end at the origin and the
other end at x = l. The rod carries a total mass M distributed non-uniformly with mass per unit
length λ(x) given at coordinate x by λ(x) = Ax2e−x/l. Remembering that

Rcm =
1

M

∫

r dm

and taking M as a given (i.e., do not trouble to determine how A and M are related1),

1If you must know, A = M/[l3(2 − 5/e)].
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(a) Deduce an integral for the x coordinate Xcm of the center of mass of this rod.

(b) Describe how you would use MAPLE to evaluate the integral. Be specific about the state-
ment(s) you would submit to MAPLE.

(c) Cast the integral in a dimensionless form and then describe how you would use luqsimp in
IDL to evaluate it and assess the accuracy of your result. Be specific about the coding you
would use, both to define the integrand for IDL and to evaluate the integral once the integrand
has been defined.

QUESTION 5: The Lagrangian Approach

m m

k k’ k

x1 x2

In the text and in class, we found the equations of motion for the illustrated system by examining
the forces experienced by the two blocks and invoking Newton’s second law. This problem leads you
through an alternate, simultaneously mysterious and wondrous, way to deduce these same equations
from a starting point that focuses on energy rather than on forces. Take the table to be horizontal and
frictionless, let the springs be neither stretched nor compressed when the system is in equilibrium,
and let the state of the system be described by the coordinates x1(t) and x2(t), which measure the
positions of the blocks from their equilibrium positions, and the velocities ẋ1(t) and ẋ2(t). Using
the symbols x1, x2, ẋ1 and ẋ2,

• write down the kinetic energy K of the system.

• write down the potential energy U of the system.

• evaluate the Lagrangian L defined by L = K − U of the system.

• pretending—this is the mysterious part—that x1, x2, ẋ1 and ẋ2 are independent of one another,
evaluate the quantities

∂L
∂ẋ1

and
∂L
∂x1

• finally, admitting that the positions and velocities are time dependent, evaluate

d

dt

(

∂L
∂ẋ1

)

− ∂L
∂x1

= 0

and marvel at the result. (Done correctly, this process will lead you to the equation of motion for
block 1 without the hassle of figuring out the forces and making sure that all of them have been
taken into account!)
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QUESTION 6: Natural Frequencies and Normal Modes

Two objects, each of mass m, are suspended as shown
from the ceiling with two springs, each of constant k.
With x1 and x2 measured from the positions of equilib-
rium under gravity, we can for this system imagine that
gravity isn’t present at all. A force analysis then leads
to the equations of motion

mẍ1 = −kx1 + k(x2 − x1)

and
mẍ2 = −k(x2 − x1)

(a) Find the (two) natural frequencies of this system
as multiples of ω0 =

√

k/m.

k

k

m

m

x1

x2

(b) Determine how the blocks should be displaced initially so that, when released from rest, the
system will oscillate in a mode corresponding to one—your choice—of the frequencies.

Hint : Begin by assuming a solution of the form

x1(t) = x10 cos ωt ; x2(t) = x20 cosωt

Reminders: (1) Pledge. (2) Please make sure you have clearly indicated the question
you have elected to omit.



Appendix D

Options for Projects in
Computational Physics

Each of Assignment 3 covering finite difference methods and Assignment 6 covering finite element
methods in Physics 540 contains a small number of problems to be solved by everyone in the class
and one assigned project for each student. Completion of each of these assignments involves

• reading appropriate sections in the text to learn about the method covered in the assignment,

• solving and writing out solutions to one or two exercises common to the entire class,1

• with respect to the assigned “big” exercise, putting a special effort into

◦ generating a solution and

◦ writing a carefully written document that

– describes in some detail how the problem was set up and solved (including a discussion
of any particular wrinkles that had to be addressed),

– defending the accuracy of the solution,

– exploring the solution in as many creative ways as possible and, in particular, as a
function of any parameters—if any—in the exercise,

– making any other comments that seem appropriate, and

– discussing the features of the solution and its dependence on the parameters, and

• preparing a 15-minute oral summary of the solution and its properties and delivering that
summary in class.

The problems that are assigned to individual students for each of these two assignments are tabulated
in Sections D.1 and D.2, respectively.

Assignment 7 contains only a project, this time of the student’s choice but subject to the
instructor’s approval. Students spend about three weeks working on this project, which can involve
any of the techniques addressed during the term but must be substantial and challenging. The
handout describing this assignment is presented in Section D.3.

1On Assignment 3, the two common exercises involve (a) modifying a template discussed in the text to solve a
1D ODE and (b) adding a convergence test to a program for solving Laplace’s equation. On Assignment 6, the one
common exercise involves using a commercial finite element program to find the electrostatic potential and charge
distributions in an annular region with Dirichlet boundary conditions at both the inner and outer radii.

61
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a b

cd

ef

g

Figure D.1: Diagram for Big Exercise B1.1 and B1.2.

D.1 Big Exercise #1 (Assignment 3)

Each student will be assigned one of the following problems as a component of Assignment 3. Should
the course sometime enroll more than six students, additional problems will be found.

B1.1 A two-dimensional plate is made by taking a square of side 1 unit and cutting a square of
side 0.5 unit out of one corner as shown in Fig. D.1. Suppose the temperature along sides
af and ab is maintained at 0 ◦C, the temperature increases linearly from 50 ◦C at e and at c
to 100 ◦C at d, and sides fe and bc are insulated. If the entire plate is initially at 0 ◦C, use
LSODE to study the approach of the temperature to equilibrium and, in particular, determine
the equilibrium temperature.

B1.2 Consider a thin membrane stretched over the frame shown in Fig. D.1. Introduce a coordinate
system in which the point a defines the origin and the lines ab and af—each of unit length—lie
along the x and y axes, respectively. In the chosen coordinates, the point d has coordinates
( 1
2 , 1

2 ). Suppose this membrane to be drawn aside from the plane of the paper so that the
rectangle gdcba is undisplaced and the square gdfe assumes a shape given by u(x, y, 0) =
64x( 1

2 − x)(y − 1
2 )(1 − y). Suppose further that this membrane is then released from rest.

Use LSODE to study the subsequent motion of the membrane. In particular, obtain surface
plots of the shape of the membrane over the xy plane for enough different times to make the
character of the motion clear. Remember that, in a dimensionless presentation, the motion of
the membrane satisfies the two-dimensional wave equation

∂2u

∂t2
=

∂2u

∂x2
+

∂2u

∂y2

B1.3 Suppose a quantum particle of mass m is initially in the state

Ψ(x, 0) =
1

√

a
√

π
e−(x+5a)2/2a2

eik0x

which represents a particle (1) whose wave function initially is Gaussian with a width on the
order of a centered at x = −5a and (2) the expectation value of whose momentum is h̄k0 and—
assuming non-relativistic motion—(3) the expectation value of whose velocity is v0 = h̄k0/m.
Suppose also that the particle moves under the influence of a static potential energy given by

V (x) =















0 x < −a

1

2
V0

(

1 + cos
πx

a

)

−a ≤ x ≤ a

0 x > a
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Solve the Schrödinger equation,

ih̄
∂Ψ

∂t
= − h̄2

2m

∂2Ψ

∂x2
+ V Ψ

and obtain graphs of |Ψ(x, t)|2 versus x for several values of t, extending your graphs over
a time at least as great as tend = 2x0/(h̄k0/m). Time permitting, compare the behavior for
different values of k0. In effect, you are looking at the scattering of a particle of incident energy
E = h̄2k0/2m from a potential hump having the shape of a single hump of the cosine curve.
Hints: (1) Cast the problem in dimensionless form using a as the unit of length, finding a
suitable unit of time, and introducing a dimensionless wave number k = k0a. (2) Recognize
that the quantum wave function is complex, write Ψ = Ψr + iΨi, and show that the real and
imaginary parts of the (dimensionless) Schödinger equation are

∂Ψr

∂t
= −∂2Ψi

∂x2
+ V Ψi ;

∂Ψi

∂t
=

∂2Ψr

∂x2
− V Ψi

(3) Seek a solution over the interval −10a ≤ x ≤ 10a and assume that the wave function is
and remains zero at the two ends of this region for all time, though you can’t then generate
the solution for too long, since this assumption will certainly not be valid forever.

B1.4 In (two-dimensional) polar coordinates (ρ, φ), the Laplace equation is

∇2u =
1

ρ

∂

∂ρ

(

ρ
∂u

∂ρ

)

+
1

ρ2

∂2u

∂φ2
= 0 =⇒ ρ2 ∂2u

∂ρ2
+ ρ

∂u

∂ρ
+

∂2u

∂φ2
= 0

Suppose a solution is sought in the region 0 < a ≤ ρ ≤ b, 0 ≤ φ ≤ 2π subject to the boundary
conditions

u(a, φ) = f(φ) ; u(b, φ) = g(φ)

and the requirement that the solution be periodic with period 2π in φ. Let ∆ρ = (b − a)/n
and ∆φ = 2π/m and then let ρi = a + i∆ρ, i = 0, 1, 2, . . . , n and φj = j ∆φ, j = 0, 1, 2, . . . ,m.
Finally let ui,j = u)ρi, φj). Discretize this equation. In particular use a central difference
formula to approximate the derivative ∂u/∂ρ. You should find ultimately that

ui,j =
ui+1,j

(

ρ2
i ∆φ2 + 1

2ρi ∆φ2 ∆ρ
)

+ ui−1,j

(

ρ2
i ∆φ2 − 1

2ρi ∆φ2 ∆ρ
)

+
(

ui,j+1 + ui,j−1

)

∆ρ2

2 ρ2
i ∆φ2 + 2∆ρ2

Determine how this equation must be modified when i = 0, i = n and/or j = 0, j = m, and
then write a program to solve this equation when

f(φ) = 0 ; g(φ =

{

−100 −π < φ < 0

100 0 ≤ φ ≤ π

Finally, compile, link, and run your program to explore the solution in some detail.

B1.5 Demonstration that the full discretization of the wave equation ü = c2u′′ leads to an unstable
method unless c2 ∆t2/∆x2 ≤ 1 is extremely difficult. To illustrate this the instability, recast
fdmwave1d to solve the wave equation subject to the boundary conditions u(0, t) = u(l, t) = 0
and the initial conditions u(x, 0) = 0, ∂u(x, 0)/∂x = 0. The solution should, of course, be zero
at all subsequent times, since we have started the string in its equilibrium position with zero
velocity. Now, suppose that a computer-roundoff error occurs such that, instead of being zero
at all nodes, u(x,∆t) = 0 everywhere except at one node near the middle of the string and,
at that node u(x,∆t) mistakenly acquires the value 1 (one). Use your program to solve this
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problem for choices of the parameters that make α = 0.5 and other choices that make α = 1.5.
Look at the solution with print or plot frequency 1 and compare the way in which that one
disruption of a value at the end of the first time step propagates forward in time for the two
values of α.

B1.6 Demonstration that the full discretization of the diffusion equation u̇ = α2u′′ leads to an
unstable method unless α2 ∆t/∆x2 ≤ 1/2 is extremely difficult. To illustrate this instability,
recast fdmdiffus1d to solve the diffusion equation subject to the boundary conditions u(0, t) =
u(l, t) = 0 and the initial condition u(x, 0) = 0. The solution should, of course, be zero at
all subsequent times, since we have started the temperature distribution with its equilibrium
values. Now, suppose that a computer-roundoff error occurs such that, instead of being zero at
all nodes, u(x,∆t) = 0 everywhere except at one node near the middle of the rod and, at that
node u(x,∆t) mistakenly acquires the value 1 (one). Use your program to solve this problem
for choices of the parameters that make γ = 0.25 and other choices that make γ = 1.0. Look at
the solution with print or plot frequency 1 and compare the way in which that one disruption
of a value at the end of the first time step propagates forward in time for the two values of γ.

D.2 Big Exercise #2 (Assignment 6)

Each student will be assigned one of the following problems as a component of Assignment 6. Should
the course sometime enroll more than six students, additional problems will be found.

B2.1 Suppose a linear element e is characterized by three nodes at x
(e)
1 , x

(e)
2 , and x

(e)
3 . Further, let

the solution ϕ̃(e) on that element be approximated by the quadratic function

ϕ̃(e) = a(e) + b(e)x + c(e)x2

(a) Find the constants a(e), b(e), and c(e) that will make this function match the specific values

ϕ̃
(e)
1 , ϕ̃

(e)
2 , and ϕ̃

(e)
3 at the points x = x

(e)
1 , x

(e)
2 , and x

(e)
3 , respectively. (b) Substituting these

values into the above expression and grouping terms appropriately, cast the result in the form

ϕ̃(e) =
3

∑

i=1

ϕ̃
(e)
i N

(e)
i (x)

and show that the shape functions N
(e)
i (x) appropriate to this three-noded linear element are

N
(e)
1 (x) =

1

∆

∣

∣

∣

∣

∣

∣

∣

1 x x2

1 x
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2 (x
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2 )2

1 x
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3 (x

(e)
3 )2

∣

∣

∣

∣

∣

∣

∣

=
(x

(e)
2 − x)(x

(e)
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(x
(e)
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(e)
1 )(x
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(e)
1 )

N
(e)
2 (x) =

1

∆
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∣

∣

∣

∣

∣

∣
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where

∆ =

∣

∣

∣

∣

∣

∣

∣

1 x
(e)
1 (x

(e)
1 )2

1 x
(e)
2 (x

(e)
2 )2

1 x
(e)
3 (x

(e)
3 )2

∣

∣

∣

∣

∣

∣

∣

Finally, (c) show that—with ξ = (x − x
(e)
1 )/l(e)—these functions reduce to

N
(e)
1 (x) = 2(ξ − 1)

(

ξ − 1

2

)

; N
(e)
2 (x) = 4ξ(1 − ξ) ; N

(e)
3 (x) = 2ξ

(

ξ − 1

2

)

when x
(e)
2 is midway between x

(e)
1 and x

(e)
3 , i.e., when x

(e)
2 = x

(e)
1 + 1

2 l(e) and x
(e)
3 = x

(e)
1 + l(e),

and (d) obtain graphs of these three shape functions over the interval 0 < ξ < 1. Hint : You
may find a symbolic manipulating program to be useful at many points in this problem.

B2.2 Accepting the shape functions N
(e)
i (x, y) given in the text when the approximating function

ϕ̃(x, y) = a + bx + cy is applied to a triangular element in two dimensions, (a) verify for each
node i that the shape function is zero not only at the two nodes not identified by its index but
also along the entire line joining those two nodes, and (b) find the functions to which these
functions reduce when (x0, y0) = (−1, 0), (x1, y1) = (1, 0), (x2, y2) = (0, 1) and use IDL to
draw a surface plot of each of these three functions under these circumstances.

B2.3 The boundaries of a square region are maintained at zero potential. Centered in this outer
square is a second square with edges one-quarter—more or less—the length of the edges of
the larger square. The region inside the smaller square contains a charge distributed with a
constant charge density. Thus, the potential in this region satisfies the Poisson equation

∂2u

∂x2
+

∂2u

∂y2
= − ρ

ε0

subject to the boundary conditions that u(x, y) = 0 everywhere on the perimeter of the larger
square. Further, suppose that the inhomogeniety −ρ/ε0 has some constant nonzero value—
what value is merely a matter of scaling—inside the smaller square and is zero outside the
smaller square.

a. Verify that this equation is elliptic and separable.

b. Find the potential throughout the entire region inside the larger square.

c. Generate a surface graph of the potential over this region.

d. Generate an equipotential map showing contours at judiciously chosen values of the po-
tential.

e. Generate a map showing the field lines in the square.

f. Generate graphs of the charge densities induced on the edges of the square.

Hint : (1) Probably you can calculate electric fields and charge densities most easily within the
visualization program you use. Don’t try to incorporate those quantities in the output of the
program invoking mud2sp.f. (2) Remember that E = −∇V and that σ = ε0E • n̂.

B2.4 Instead of the inhomogeneity described in the previous exercise, suppose the charge density
inside the larger square is nonzero only in two square regions having edges one-sixteenth the
edge of the larger square, that the charge density is constant and positive in one of these regions
and constant (same magnitude) and negative in the other. Further, let these two regions be
symmetrically positioned along the diagonal of the larger square. Find the potential in the
larger square and obtain the same spectrum of graphs as those identified in the previous
exercise.
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Figure D.2: Geometry for Exercise B2.5.

B2.5 Find the steady state temperature distribution in the geometry shown in Fig. D.2. All arcs
are semicircles or quarter-circles of radius 1 unit, and the straight patches are either 2 or 4
units in length. As indicated by the shading, the straight patches are insulated. Each circular
arc is maintained at the indicated temperature in degrees Celsius. Assume that the material
of which the shape is constructed has uniform thermal conductivity and heat capacity.

B2.6 Find the electrostatic potential in the geometry of Fig. D.3 when the large semicircle and
the diameter are maintained at 0 Volts and the region inside the inner circle contains electric
charge distributed uniformly with density 1 C/m2. Note that you will need to mesh the area
inside the inner circle as well as the area between the inner circle and the outer boundary of the
region of interest, but you must do so in a way that preserves the nodes along the inner circle.
To specify the charge density, you will have to provide a “boundary condition” on and within
that inner circle. I think—but I am not sure—that you want to migrate from the Main menu
through the Boundary Conditions menu to the Electrostatic menu from the ‘Boundary
Condition Class’ panel in the Boundary Conditions menu. The ‘Face Charge’ button in
that menu may be the one you want in order to apply a distributed charge to a selection of
faces.

D.3 Big Exercise #3 (Assignment 7)

Your last obligation—there is no final examination—to Physics 540 is to complete an extended
project of your choice (but subject to my approval), present an oral report on that project in the
last week of the term, and hand in a carefully written paper on the project by noon on Saturday at
the end of the term. A brief written project proposal is due at the beginning of week 7. I offer the
following suggestions to stimulate your thinking about this project. I am, of course, willing to listen
to—and to help refine—any other proposals that you might have.

B3.1 The normal modes of oscillation of a square membrane. This problem can be approached
by using finite difference methods to generate an equivalent matrix eigenvalue problem and
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Figure D.3: Geometry for Problem B2.6.

then solving that problem numerically to obtain both the lowest several eigenvalues (natural
frequencies) and the shapes of the membrane in each mode. This exercise would involve writing
your own IDL or FORTRAN code to implement the numerical solution, though you would want
to find and use IDL routines or Numerical Recipes routines for the actual solution once you
have set up the matrix whose eigenvalues and eigenvectors are to be found.

B3.2 A three-dimensional electrostatic problem in Cartesian coordinates whose solution would in-
volve using the multigrid subroutine mud3sp.f.

B3.3 The two-dimensional Laplace equation in cylindrical coordinates with some choice (or choices)
of boundary conditions. This problem would be approached using the multigrid subroutine
mud2sp.f, though care would be needed to set up the problem in non-Cartesian coordinates.

B3.4 The temperature distribution inside a three-dimensional region that is cylindrically symmetric.
This exercise should be doable with mud2sp.f, though care would be needed to set up the
problem in non-Cartesian coordinates.

B3.5 The normal modes of oscillation of an irregularly shaped two-dimensional membrane, which
would involve learning about some features of MARC/MENTAT not discussed in class.

B3.6 A situation using MARC/MENTAT to set up and solve a problem in a fairly simple three-
dimensional geometry.
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