
Introducing Computational Approaches

in Intermediate Mechanics

Text—somewhat expanded—of Invited Talk
Delivered at the Winter Meeting of

the American Association of Physics Teachers
Seattle, Washington 7 January 2007

David M. Cook

Department of Physics
Lawrence University

Box 599
Appleton, WI 54912

920-832-6721 david.m.cook@lawrence.edu

ABSTRACT

In the winter of 2003, we at Lawrence University moved Lagrangian mechanics and rigid
body dynamics from a required sophomore course to an elective junior/senior course, freeing
40% of the time for computational approaches to ordinary differential equations (trajectory
problems, the large amplitude pendulum, non-linear dynamics); evaluation of integrals (finding
centers of mass and moment of inertia tensors; calculating gravitational potentials for various
sources); and finding eigenvalues and eigenvectors of matrices (diagonalizing the moment of
inertia tensor, finding principal axes), and to generating graphical displays of computed results.
Further, students begin to use LATEX to prepare some of their submitted problem solutions.
Placed in the middle of the sophomore year, this course provides the background that permits
faculty members as appropriate to assign computer-based exercises in subsequent courses.
Further, students are encouraged to use our Computational Physics Laboratory on their own

initiative whenever that use seems appropriate.

1 Introduction

Practicing physicists routinely confront a variety of tasks that support their research but
are peripheral to their main objectives. While physicists in different subareas will probably
disagree about the relative importance of particular tasks, most will agree that the more im-
portant and most frequent of these tasks involve visualizing functions of one, two, and three
variables, solving algebraic and differential equations, evaluating integrals, finding roots,
eigenvalues, and eigenvectors, acquiring, displaying, and analyzing experimental data, pro-
cessing images, and preparing papers and talks. More often than not, pursuit of these tasks
symbolically and analytically is at best tedious, difficult, and prone to error and at worst
essentially impossible. In many cases, however, these tasks can be addressed by exploiting
computational approaches. To facilitate their use of such approaches, practicing physicists
of the twenty-first century must be acquainted with an operating system (preferably some
flavor of UNIX or LINUX), a text editor, a spreadsheet, a computer algebra system, an ar-
ray/number processor, a visualization tool, a standard computational language, a program
for data acquisition, publishing software, presentation software, and maybe other packages
for more specialized tasks like circuit simulation and image processing.

2 Introducing Computational Approaches in Intermediate Mechanics

Undergraduate curricula that do not provide physics majors with at least an ori-
entation to the applicable algorithms and a reasonable spectrum of the appropriate com-
putational tools are failing to prepare their graduates for the activities that practicing
scientists will find themselves doing frequently and extensively in the twenty-first century.
The task before the physics educator is to design a physics curriculum that, without short-
changing important topics from the historical curriculum, nonetheless includes exposure
to and opportunity to build skill in the use of computational approaches to a selected set
of representative problems in physics. While illustrations must, of course, be drawn from
several areas of physics, the objective is as much to develop generalizable computational
skills as to learn something of the physics of the situations used as examples.

These are the convictions that have driven and informed the curricular evolution
at Lawrence University during the past couple of decades. In the broadest of terms, by
graduation (and, with any luck, well before that time), we want each of our majors to have
developed not only the ability to recognize when a computational approach may have merit
but also the skill to pursue that approach confidently, fluently, effectively, knowledgeably,
and—most of all—independently. In this talk, I want to focus on the sophomore mechan-
ics course which we have modified to include computational elements and which provides
the starting point in the development of our majors’ exposure to serious computation in
application to problems in physics.

2 Curricular Context

First, however, I want to describe briefly the curricular structure in which our efforts are
embedded. Each year, full-time students at Lawrence take three courses in each of three
ten-week terms. A one-term course is treated officially as the equivalent of a 3-1/3 semester-
hour course, class periods are 70 minutes long, and introductory laboratories are three hours
long. The ten physics and four mathematics courses required of a typical minimum major
are shown in Table 1. The senior year is not as thin as it looks, because most majors elect
more than the minimum number of physics courses and many will elect one term or more
of independent study starting in the apparently empty fall term.

In broad outline, freshman prospective majors encounter LoggerPro, Kaleidagraph,
and Excel for data acquisition and analysis, curve fitting, and graphical visualization. Fall-
term sophomores in Electronics encounter Multisim 7 for circuit simulation and continue
to use Kaleidagraph and Excel ; winter-term sophomores in Computational Mechanics ex-
perience a concentrated exposure to IDL, MAPLE, and LATEX for solving ordinary differen-
tial equations, evaluating integrals, visualizing functions graphically, and preparing neatly
printed problem solutions; and spring-term sophomores in Electromagnetic Theory continue
to use IDL and MAPLE for graphical visualization and for numerical solution of Laplace’s
equation. Junior/senior courses in quantum mechanics, advanced laboratory, computational
physics, mathematical methods of physics, plasma physics, and advanced mechanics make
further explicit use of computers, though the extent of those uses varies with the instructor.
In addition, at all points in our curriculum, students are free to use the resources of the
Computational Physics Laboratory (CPL) whenever they deem such use to be appropri-
ate, and many do so in Advanced Laboratory, senior independent projects, and many other
contexts. Upper-class majors have 24/7 access to the CPL.

Introducing Computational Approaches in Intermediate Mechanics 3

Term I Term II Term III

Fresh Freshman Studies Freshman Studies Elective
Elective *Intro Classical Physics *Intro Modern Physics

Calculus I Calculus II Calculus III

Soph *Electronics *Computational Mechanics *E and M
Diff Eq/Lin Alg Elective Elective

Elective Elective Elective

Junior *Quantum Physics Elective *Advanced Lab
Elective Elective Physics Elective
Elective Elective Elective

Senior Elective Physics Elective Elective
Elective Elective Elective
Elective Elective Elective

Available Physics Electives:

Group 1: Thermal Physics, Optics, Advanced Mechanics, Advanced E and M, Math-
ematical Methods of Physics, Advanced Modern Physics, Plasma Physics, Solid
State Physics, Laser Physics, Computational Physics, Tutorials.

Group 2: Independent Studies/Capstone.

Table 1: Typical Program of a Physics Major. Courses in bold type are required for a
minimum major in physics; courses marked with an asterisk direct students explicitly to the
computer and, in most cases, include some instruction in one or more of our computational
resources.

3 Computational Mechanics

Prior to the academic year 2002–03, we offered a traditional sophomore course in interme-

diate mechanics and an elective sophomore course called Computational Tools in Physics.
In 2002–03, the course Computational Tools in Physics was discontinued, and the required

sophomore course titled Computational Mechanics, which replaced the course in classical
mechanics, became the starting point in our nurturing of our students’ abilities to take
full advantage of the resources of the CPL. Computational Mechanics combines about 60%
of the material covered in a traditional course in intermediate mechanics with about 40%
of the orientation to computing covered in the discontinued course. The incorporation of
the computational elements in a course that is required of sophomore majors assures that
all majors have an early introduction to computational approaches, makes possible the as-
sumption of that background in all subsequent courses, and supports independent use of
our computational resources even if individual faculty members in later courses do not make

4 Introducing Computational Approaches in Intermediate Mechanics

Week 01 Orientation to LINUX (including text editor)
Kinematics/Dynamics of Translation/Rotation
Impulse/Momentum/Work/Kinetic Energy
Gravity/Electromagnetic Force/Friction/Tension

Week 02 Orientation to IDL/TGIF (basic capabilities, visualization)

Week 03 Equations of Motion (constant force/torque, force dependent
only on t, . . . only on x, . . . only on v)

Potential Energy, SHM, Equilibrium
Work and Potential Energy in 3D

Week 04 Velocity-Dependent Forces
Damped and Driven SHM; Resonance
Coupled and Small Amplitude Oscillation

Week 05 HOUR EXAMINATION
Orientation to LATEX
Central Forces/Effective Potential Energy, Orbital Equation

Week 06 Planets, Satellites, Comets, Scattering
MID-TERM READING PERIOD

Week 07 Orientation to MAPLE
Symbolic Solution of ODEs with MAPLE
Algorithms to solve ODEs numerically

Week 08 Numerical Solution of ODEs with IDL

Week 09 HOUR EXAMINATION
Symbolic Evaluation of Integrals with MAPLE

Week 10 Algorithms to Evaluate Integrals Numerically
Numerical Evaluatation of Integrals with IDL

Week 11 FINAL EXAMINATION

Table 2: Weekly Schedule for Computational Mechanics.

explicit assignments involving those resources.

3.1 Outline of the Course

The main objectives of Computational Mechanics are conveyed by its catalog description,
which asserts that it “introduces symbolic and numerical computation through examples
drawn mainly from classical mechanics but also from classical electromagnetism and quan-
tum mechanics” and that it “emphasizes computer-based approaches to graphical visual-
ization, the solution of ordinary differential equations, the evaluation of integrals, and the
finding of roots, eigenvalues and eigenvectors”. The main topics of the course are summa-
rized in Table 2

Introducing Computational Approaches in Intermediate Mechanics 5

The course begins with a tutorial exercise to acquaint students with the features of
the workstations in the CPL and with the LINUX operating system. Concurrently, students
review and extend their introductory studies of translational and rotational kinematics and
dynamics, impulse, momentum, work, kinetic energy, and common forces. They spend
the second week entirely in the CPL becoming acquainted with the general capabilities
of IDL, especially for graphical visualization of scalar functions of one, two, and three
variables, and with Tgif for generating drawings. In the third and fourth weeks, the course
returns to the fundamental laws of mechanics to set up and solve the usual problems in
one-dimensional motion via standard analytic techniques, and to extend the definition of
potential energy and conservative forces to three dimensions. Then, in the fifth and sixth
weeks, students encounter the elements of LATEX and spend several days on the standard
analytic approaches to the central force problem. The remainder of our ten-week term is
spent mostly in computationally related activities, including an orientation to MAPLE, a
discussion of numerical algorithms for solving ordinary differential equations (ODEs) and
evaluating integrals, and an introduction to routines built into IDL for solving ODEs and
evaluating integrals.

In the rearrangement that generated Computational Mechanics from its predeces-
sor, a more traditional intermediate course in classical mechanics, only Lagrangian me-
chanics and rigid-body dynamics were relocated to another—and later—course to provide
the time for the addition of computational approaches to graphical visualization, solving
ODEs, evaluating integrals, and preparing documents. Other computational topics are in-
corporated in the introductory laboratories and in later courses. Computational Mechanics,
which is a rapidly paced and intensive course, provides the starting point in which students
are awakened to the merit of computational approaches and learn to use some of those
approaches. Students in the course spend quite a bit of time in the CPL. Especially during
the first few weeks of the term, when students are inexperienced with the available com-
putational tools, we arrange for a more experienced student—often a student who worked
with me in the previous summer—to be available in the CPL for four to six scheduled hours
each week to help students in the course strengthen their wings so that, later in the term,
they can be expected to fly more confidently on their own.

4 Examples

In the remainder of this talk, I want to describe several representative exercises that are
assigned to students in Computational Mechanics. I will limit myself to computational ex-
ercises and—for the sake of treating more examples in a short time—to only sketching the
coding, but please understand on the one hand that something like 50% of the assigned
exercises and 60% of the course content deal with mechanics in traditional ways and on
the other hand that students are expected—to be sure with help—to generate the entirety
of the coding I will only sketch. While emerging from considerations in mechanics, the
computational component of the course is organized not by topics in mechanics but by
computational strategies such as graphical visualization, solving ordinary differential equa-
tions, and evaluating integrals. In structuring these components of the course, I therefore
feel free to draw on examples from areas of physics outside of mechanics to illustrate the
computational strategies.

6 Introducing Computational Approaches in Intermediate Mechanics

4.1 Visualization: Black Body Radiation

After becoming familiar with the operating system, students first learn about strategies for
generating graphical displays of functions of one and two independent variables. Gravita-
tional and electrostatic potential energies, particle trajectories, diffraction patterns, quan-
tum probability densities, and many other physical situations provide the functions. Among
my favorites is the blackbody radiation spectrum,

u(λ, T) =
8πch

λ5

1

ech/(λkT) − 1

I choose this example in part because it illustrates very effectively the importance of thinking
about scaling when preparing a graphical display. Students seem to have difficulty with the
broad notion of scaling and particularly with conceiving systematic strategies for casting
expressions in a dimensionless form, but I think the skill to be sufficiently important that
I try to assign many exercises in which students are forced to practice the skill. To cast
this specific expression in dimensionless form, students pick an arbitrary wavelength λ0 as
a unit, recast the expression as a function of the dimensionless wavelength λ by setting
λ = λ0 λ, recognize along the way that temperature would conveniently be measured in
units of T0 = ch/(λ0k) and spectral density in units of u0 = 8πch/λ5

0 and conclude that
they should plot the function u = u/u0 given by

u =
1/λ

5

e1/(λ T) − 1

as a function of λ for various values of T = T/T0. Arguing—reasonably—that, in a dimen-
sionless casting, the range 0.0 ≤ λ ≤ 10.0 and the value T = 1.0 would be a good first trial,
students using IDL might construct the IDL coding

lambda = findgen(201)/20.0

T = 1.0

u = (1.0/lambda^5)/(exp(1.0/(lambda*T)) - 1)

u[0] = 0.0

plot, lambda, u, title=’...’, thick=..., ...

which, respectively, set a vector to contain the values [0.0,0.05, 0.10, ... 10.00], choose a rea-
sonable temperature, evaluate the spectrum, correct for the indeterminate value at lambda
= 0, and plot the desired graph of u versus λ. (The ellipses in the plot statement replaces
several embellishments that students quickly learn to add to the basic plot command.)

A common error in this exercise is for students to omit the parentheses around λT
in the exponent, thus evaluating not 1/(λT) but, because of the priority of operations, T/λ,
and receiving quite unreasonable graphs. If that error has been avoided (or corrected), then
the resulting graph looks reasonable—save that the peak is very much crowded up against
the vertical axis. I expect students at this point to realize that the interval 0.0 ≤ λ ≤ 10.0
is simply too wide an interval for satisfactory display of the function. Examination of the
first trial graph suggests that the interval 0.0 ≤ λ ≤ 1.0 would be more sensible. That
choice—not shown in the above coding—leads to a much more reasonable graph of this
function.

Introducing Computational Approaches in Intermediate Mechanics 7

Figure 1: Black-Body Spectrum

Actually, I put in a statement—the penultimate statement u[0]=0.0—that stu-
dents probably wouldn’t put in on first pass. I would expect students to notice, however,
that without that statement the graph doesn’t start at λ = 0. I would further expect them
to inquire why that point is omitted and, perhaps guided by a warning message, to discover
first that the function is indeterminate at that point and second that IDL is able to deal
with that indeterminacy in a way that, while not evaluating a limit, still allows the rest of
the graph to be produced. The function, however, has a perfectly sensible limit—zero—at
that point. To put that point on the graph, the statement setting u[0] = 0 is added—but
typically only in hindsight (and only if the student happens to notice the gap in the graph).

The code above will produce a satisfactory graph on the screen. It takes a bit
more tinkering to generate a graph that prints satisfactorily and, perhaps to decide on
other temperatures and overplot a few more graphs. The student’s final graphical result,
however, might look like Fig. 1

Another part of this exercise asks students to generate a surface plot of the function
u over the λ-T plane. The essential code to achieve that end is

lugen_grid, lambda, xrange=[0.0,1.0], nx=50, $

T, yrange=[0.6,1.0], ny=20

u = (1/lambda^5)/(exp(1.0/(lambda*T)) - 1)

u[0,*] = 0.0

device,decomposed=0 & loadct, 3

shade_surf, u, lambda, T, title=’...’, ...

which creates two arrays with values of λ and T , evaluates the function as a function of two
variables, corrects for the indeterminacy at λ = 0, sets the color table for a surface plot,
and creates that plot. The result after a bit of embellishment to put on labels is shown in
Fig. 2. I do not know why the plot has the shaded background.

8 Introducing Computational Approaches in Intermediate Mechanics

Figure 2: Surface Plot of Black-Body Spectrum

k
m1 m2

x y

m1
k(y-x-d)

m2
-k(y-x-d)

Figure 3: A System of Coupled Oscillators

4.2 Solution of ODEs Symbolically

The most ubiquitous mathematical task in classical mechanics involves the solution of ordi-
nary differential equations, with common examples including driven, damped oscillations;
trajectories in various gravitational, electrostatic, and magnetostatic force fields; and be-
havior of coupled oscillators. Students in Computational Mechanics address this task both
symbolically and numerically. To illustrate the symbolic approach, I choose here to explore
the motion of two blocks of different masses m1 and m2 free to slide along a one-dimensional,
frictionless track but connected by a Hooke’s-law spring of constant k and natural length
d. The system is shown in Fig 3. The ultimate objective is to demonstrate the separation
of the motion into the motion of the center of mass on which is superimposed the motion
of one block relative to the other. Students quickly draw the force diagrams and determine

Introducing Computational Approaches in Intermediate Mechanics 9

the equations of motion to be

m1
d2x

dt2
= k(y − x − d) ; m2

d2y

dt2
= −k(y − x − d)

Then, they invoke the MAPLE statements

eq1 := diff(x(t),t$2) = k*(y(t) - x(t) - d);

eq2 := diff(y(t),t$2) = -k*(y(t) - x(t) - d);

eqs := { eq1, eq2 };

ics := { x(0)=x0, D(x)(0)=v0, y(0)=y0, D(y)(0)=w0 };

soln := dsolve(eqs union ics, { x(t), y(t) });

to define the equations as a set, define the initial conditions as a set, and obtain a solution.
Unfortunately, the solution is a major mess—and it takes some doing to beat the expressions
into a reasonable and interpretable form. One interesting result can, however, be found with
the statements

xx := eval(x(t), soln); yy := eval(y(t), soln);

xcm := (m1*xx + m2*yy)/(m1 + m2);

which extract x(t) and y(t) as simple expressions and calculate the position of the center
of mass, finding it—I suppress a few (not entirely simple) details—to be given by

xcm =
m1v0 + m2w0

m1 + m2
t +

m1x0 + m2y0

m1 + m2

Although it sometimes requires a hint or two, most students will recognize this result as
describing motion at constant velocity (the coefficient of t) away from the initial position
of the center of mass with the initial velocity of the center of mass!

Students are also asked to calculate the separation of the two blocks, the first step
of which is simple enough and involves the MAPLE statements

r := yy - xx;

Beating the result into an interpretable form is complicated. Students should note, however,
that the result contains several terms involving the cosine function, several involving the
sine function, and one involving no time dependence. Further, students should notice that
the sine and cosine functions all have the same argument, which I have abbreviated in the
compacted output

r = d + (y0 − x0 − d) cos Ωt +
w0 − v0

Ω
sin Ωt

as Ωt. Given class discussions, students should also recognize Ω as
√

k/µ, where µ is the
reduced mass of the two-body system.

In essence, students working this exercise find first hand that formal solution of
the equations of motion for a representative system reveals, first, that the center of mass
moves with constant velocity in the absence of external forces and the linear momentum of
the system is constant and, second, that the motion of each block relative to the other is
simple harmonic oscillation about the equilibrium separation!

With the equations of motion still in MAPLE’s workspace, students can also ask
about the normal modes of oscillation. The MAPLE statements

10 Introducing Computational Approaches in Intermediate Mechanics

eq := eval({eq1, eq2}, y(t)=z(t)+d); (1)

tmp := cos(omega*t); (2)

guess := { x(t) = x0*tmp, z(t) = z0*tmp); (3)

eqn := eval(eq, guess); (4)

eq3 := simplify(eqn[1]/cos(omega*t)); (5)

eq4 := simplify(eqn[2]/cos(omega*t)); (6)

tmp := solve(eq3, z0); (7)

char := eval(eq4, z0=tmp); (8)

solve(char, omega^2); (9)

yield the output

ω2 = 0,
k(m1 + m2)

m1m2
or ω2 = 0,

k

µ

for the frequencies of the two modes. In these statements, we recognize—line 1—that the
natural length of the spring can be absorbed into a translated y, so the differential equations
become homogeneous. Then we substitute—lines 2, 3, and 4—a guessed sinusoidal solution
with an as yet unknown frequency, extract—lines 5 and 6—the two algebraic equations for
the unknown amplitudes by dividing out the common sinusoidal factor, and systematically
solve—lines 7, 8, and 9—the resulting pair of equations for ω2. We find two solutions,
one of which—the zero—conveys the steady motion at constant velocity (an oscillation at
frequency zero, i.e., period infinity) and the other of which conveys the oscillation already
seen in the full solution. The connection between center of mass motion and relative motion
on the one hand and the two normal modes of oscillation on the other hand emerges naturally
in this analysis.

Beyond revealing the nature of center of mass motion superimposed on top of
relative motion as a way to think of the motion of a two-body system acted on by a central
force, there are several lessons in this exercise. The most important of these is that programs
like MAPLE really demand that you know where you are going and what to expect. Beating
the results of the first step in a calculation into a reasonable and interpretable form often
requires a fair bit of ingenuity and, above all, a lot of appreciation of where you think you
should end up. A simple statement that says “simplify this expression and put it in the form
I would like to see” does not usually exist. Indeed, I will admit that complexity associated
with beating expressions into sensible forms has somewhat damped my original I would now
say overly optimistic expectation about the value of computer algebra systems.

4.3 Solving ODEs Numerically

Discussion of numerical solutions to ODEs begins with a discussion of the simplest algo-
rithms, of explicit coding of some of those algorithms, of the ways in which one can assess
the accuracy of solutions generated numerically, and—qualitatively—of ways in which one
might improve the algorithms to speed the calculation or increase its accuracy, given the
hazards of doing arithmetic to finite precision on floating point numbers. Ultimately, how-
ever, students move to using fairly sophisticated, adaptive algorithms by exploiting ODE
routines built in to IDL. Examples include many of the problems already discussed ana-
lytically but also non-linear and chaotic systems. One of my favorite examples is the large
amplitude pendulum shown in Fig 4. When times are measured in units of

√

l/g, the

Introducing Computational Approaches in Intermediate Mechanics 11

m

l

θ

T

mg

θ

Figure 4: A Simple Pendulum.

equation of motion for this system is

d2θ

dt2
= − sin θ

In preparation for invoking an existing IDL routine, students must see this second-order
equation as a pair of first order equations,

dθ

dt
= ω ;

dω

dt
= − sin θ

associate the two dependent variables with the elements of a single vector in the program,

θ 7→ y[0] ; ω 7→ y[1]

and create the function subprogram

FUNCTION pendulum, t, y

RETURN, [y[1], -sin(y[0]]

END

that takes as input the (scalar) independent variable and (vector) dependent variable and
returns a vector containing the value of the derivatives of the two dependent variables. From
this point, one invokes the statements

amp = 10.0

amprad = !pi*amp/180.0

ludiffeq_23, ’pendulum’, tt, yy, t0=0.0, tf=20.0, init=ics, tol=0.0001

yydeg = 180.0*yy[0,*]/!pi

plot, tt, yydeg, yrange=[-180.0,180.0], thick=3.0

to select a particular amplitude in degrees and convert it to radians, invoke the solver
ludiffeq 23 with arguments that specify the function defining the differential equations,
the variables tt and yy to be used to store the results, the desired interval for the indepen-
dent variable, the initial conditions, and a tolerance, and plot the resulting solution. Note

12 Introducing Computational Approaches in Intermediate Mechanics

Figure 5: The Motion of a Pendulum for Various Amplitudes.

the conversion between degrees and radians so we can use degrees in talking about and
plotting the solution but respect the need for trigonometric functions to be supplied with
arguments in radians. Note also that students usually have to explore a bit before deciding
on appropriate ranges for the variables involved.

With a bit of embellishment in procedure, students can overplot position as a
function of time for several different amplitudes as in Fig 5—and note the clear dependence
of period on amplitude. With the solution in hand for a particular amplitude, it is also easy
to generate the graphs in Fig. 6, which show position versus time, angular velocity versus
time, and angular velocity versus position (the phase plane) for a chosen amplitude.

I like this example because it is relatively easy to set up, it draws attention again
to the importance of casting problems in dimensionless form, it offers an opportunity for
students to worry about the quantitative accuracy of numerical operations (though I haven’t
illustrated that aspect here), it draws attention to the utility of the phase plane, and it alerts
students to the existence of oscillations that are not simple harmonic.

4.4 Evaluating Integrals Symbolically

Examples involving integrals that can be done symbolically include finding assorted gravi-
tational and electrostatic potential energies from their sources, normalizing some quantum
wave functions, evaluating some quantum matrix elements, doing Fourier analyses, and de-
termining coefficients in expansions of known functions in series of orthogonal polynomials.
I elect to illustrate with an example that seeks the center of mass and the moment of inertia
tensor of a thin plate having the shape of a cardioid, as shown in Fig. 7. With the cusp of
the cardioid at the origin and the symmetry axis defining the x axis, the perimeter of this
shape is defined in polar coordinates by the equation

r(φ) = a(1 − cos φ)

Introducing Computational Approaches in Intermediate Mechanics 13

Figure 6: Graphs of θ versus t, ω versus t, and ω versus θ for Amplitude 150◦.

Figure 7: The Cardioid.Both coordinates are measured in units of a.

14 Introducing Computational Approaches in Intermediate Mechanics

and the x, y, and z coordinates and the position vector of an element of this plate are given
by

x = r cos φ ; y = r sin φ ; z = 0 ; r = x î + y ĵ + z k̂

As is laid out in class discussion, the position of the center of mass is given by

Rcm =
1

M

∫ 2π

0

∫ a(1−cos φ)

0
rσ r dr dφ

and the moment of inertia tensor is given by

I =

∫ 2π

0

∫ a(1−cos φ)

0

y2 + z2 −xy −xz

−yx x2 + z2 −yz

−zx −zy x2 + y2

σ r dr dφ

Here, σ (which may depend on r and φ) is the mass per unit area in the cardioid and M is
the total mass of the cardioid. The main difficulties my sophomores encounter stem from
their unwillingness to recognize that the order of integration in multiple integrals sometimes
matters and that the necessary integrals in this case are not simply integrals over a circle of
radius a centered at the origin (which are the limits many students will first apply). Once
the students get the limits right, however, their evaluation of the desired quantities takes
only a few MAPLE statements. They establish the Cartesian coordinates as functions of the
polar coordinates and find the mass of the plate, assuming the mass density to be uniform,
with the MAPLE statements

x := r*cos(phi); y := r*sin(phi); z := 0;

intM := sigma*r

M1 := int(intM, r = 0..a*(1-cos(phi)));

mass := int(M1, phi = 0..2*Pi);

Then, with the statements

pos := [x, y, z];

intcm := map(q -> sigma*r*q, pos);

Rcm1 := map(int, intcm, r = 0..a*(1-cos(phi)));

Rcm := expand(map(int, Rcm1, phi = 0..2*Pi);

they set the position vector, define the integrand for the center of mass, and evaluate the
defining (double) integral to discover that

Rcm =

[

−
5

6
a, 0, 0

]

Finally, with the statements

tens := array([[y^2+z^2, -xy, -xz],

[-yx, x^2+z^2, -yz],

[-zx, -zy, x^2+y^2]];

intI := map(q -> sigma*r*q, tens);

I1 := map(int, intI, r = a*(1-cos(phi)));

Inert := map(int, I1, phi = 0..2*Pi);

Density := solve(M=mass, sigma);

Inertia := eval(Inert, sigma=Density);

Introducing Computational Approaches in Intermediate Mechanics 15

they set the basic array for the moment of inertia tensor, evaluate the actual integrand,
evaluate the double integral, and—for the sake of a simpler appearance that is obviously
correct dimensionally—replace the mass density σ with its equivalent in terms of the total
mass of the plate. The result is

I =

7Ma2/16 0 0

0 49Ma2/48 0

0 0 35Ma2/24

Somewhat to my surprise, this moment of inertia tensor turns out to be diagonal in the
chosen coordinates. I am not surprised that the x axis is a principal axis; I am a bit
surprised that the y and z axes turn out also to be principal axes.

4.5 Evaluating Integrals Numerically

The remaining major computational topic in the course I am describing focuses on numerical
evaluation of integrals. The off-axis potential energy of rings of mass or charge, the off-axis
magnetic field of a current loop, and—given an integral definition—the value of special
functions like the Bessel functions all provide relevant examples to illustrate the general
technique. As with ordinary differential equations, students begin by examining the simplest
algorithms and coding simple examples, but they ultimately move to adaptive algorithms
built in to IDL. As a single example, I choose the integral

T (α) =
2

π

∫ π/2

0

dβ
√

1 − sin2 α
2 sin2 β

that, in units of 2π
√

l/g, gives the period T of a simple pendulum as a function of its
amplitude α. Before approaching this exercise, students will in class be led through the an-
alytic development that derives this integral, including the important dimensionless casting
presented in this slide. To be sure, MAPLE recognizes this integral as an elliptic function
and will return that evaluation if asked to do so—and students can be motivated to learn
about elliptic functions. At the same time, the evaluation of this integral numerically as
a function of the amplitude of the pendulum’s motion is instructive because it involves a
parameter in the integrand, a position that requires a treatment more complicated than
that needed when the parameter appears in the limits of integration.

To use IDL, we first define a function—called here periodint—to provide the
integrand to the integration routine that will ultimately be invoked. A file containing the
lines

FUNCTION periodint, beta

common param, alpha

RETURN, 1.0/sqrt(1-sin(alpha/2.0)^2*sin(beta)^2)

END

will play that role. Since the integration routine provides no means to pass the parameter
α from the main command level through the routine into this function, which will be
called from the routine (not from the main level), we need to invoke—and students need to

16 Introducing Computational Approaches in Intermediate Mechanics

Figure 8: Period of a Pendulum versus Amplitude.

learn about—common storage, which allows access to selected variables in various program
segments without passing the values as arguments through the succession of call statements
connecting the segments. Once periodint is available, however, evaluation of the integral
as a function of amplitude, reinstatement of the omitted factor of 2/π, and plotting the
result is quite quick, given what students bring to this exercise near the end of the course.
With the statements

common, param, alpha

ampdeg = 2.0*findgen(90) & amprad = !pi*ampdeg/180.0

period = fltarr(90)

for i = 0, 89 do begin $

alpha = amprad[i] & $

period[i] = luqsimp(’periodint’, 0.0, !pi/2.0) & $

endfor

period = (2.0/!pi)*period

plot, ampdeg, period, title=’...’, ...

they set up the common area, define a vector containing values of the amplitude ranging
in, say, two degree increments from1 0◦ to 178◦,create a parallel vector with the amplitudes
in radians, create a vector of zeros for the storage of periods, in a loop evaluate the integral
for each of the chosen amplitudes, incorporate the factor of 2/π omitted from the integrand
itself, and plot the end result. Again with some embellishments to add labels and grid lines,
the resulting graph is as shown in Fig. 8.

1We stay away from α = 180◦ to avoid a divergence in the integration.

Introducing Computational Approaches in Intermediate Mechanics 17

5 Conclusions

That’s the course and some samples of the exercises students do to practice their skills
in using computational approaches to problems in physics. As I said at the beginning,
our primary objective in incorporating an early—and substantial—explicit introduction to
computation is to make sure our students develop sufficient skills early enough in their
studies at Lawrence to assure that, ultimately, they will have the necessary knowledge
and the personal confidence to pursue computational approaches fluently, effectively, and
independently on their own initiative. That we have in substantial measure succeeded in
this endeavor is evident in the way our upper-level students continue to use computational
resources in their studies and in the extent to which the CPL has become an important
facility in our total departmental program.

6 Acknowledgments

I cannot stop without acknowledging some $750K in outside support particularly from the
National Science Foundation (1988, 1993, 2000), the W. M. Keck Foundation (1988, 1993,
2001), the Alfred P. Sloan Foundation (1990), and Lawrence University. Further, I must
acknowledge support and encouragement over the past 20 years from my departmental
colleagues (and especially John R. Brandenberger and the late J. Bruce Brackenridge), 26
Lawrence students who have worked as research assistants, numerous Lawrence students
who have experienced computation in various courses, and the 70 faculty members from
around the country who participated in one or another of four NSF-supported week-long
workshops at Lawrence in the summers of 2001, 2002, and 2003.

