

LAWRENCE UNIVERSITY

POSTER EJ01-19: COMPUTATION IN THE LAWRENCE PHYSICS CURRICULUM

Fundamental Convictions

In approaching problems in physics, physicists

- Solve algebraic equations
- Solve ordinary differential equations
- Solve partial differential equations
- Evaluate integrals
- Find roots, eigenvalues, and eigenvectors
- Acquire and analyze data
- Graph functions and data
- Fit curves to data
- Manipulate Images
- Prepare reports and papers

Physicists of the 21-st century must be able to use computational approaches alongside analytic approaches, and hence must be familiar with

- An operating system, preferably UNIX or LINUX
- A text editor, e.g., nedit
- A spreadsheet, e.g. EXCEL
- An array processor, e.g., IDL, MATLAB
- A symbolic manipulator, e.g. MAPLE, MATHEMATICA
- A visualization tool
- A computational language, e.g., FORTRAN, C, C++
- A technical publishing system, e.g. LaTeX
- A presentation program, e.g., PowerPoint
- A program for data acquisition, e.g., LabView

To prepare majors, our curricula must

- Introduce computational resources *early*
- Use computational resources *throughout the curriculum*
- Focus *initially* on the tools themselves
- Warn of the hazards of finite-precision arithmetic

Infrastructure

Introductory Physics Laboratory

Hardware: 8 HP PCs, LabPro interfaces and several sensors; Software: EXCEL, Kaleidagraph, LoggerPro, Microsim 7, Praat

Computational Physics Laboratory

Hardware: 10 HP xw9300 Linux workstations, HP ProliantDL380 file server, HP 4200DTN monochrome printer, Tektronix Phaser 350 color printer Software: IDL, MAPLE, C and FORTRAN compilers, text editors, LaTeX, ODEPACK, MUDPACK, MARC/MENTAT, Numerical Recipes Library

Advanced Physics Laboratory

Hardware: 5 PCs with interface cards, measuring instruments with computer compatibility *Software*: LabView; assorted drivers

The Lawrence Response

• Equip introductory and advanced laboratories and build the

- Computational Physics Laboratory (CPL), to which majors have
- 24/7 access; see panel at bottom of first column • Introduce computer acquisition and analysis of data in the
- introductory laboratories

• Introduce Computational Mechanics, a required sophomore

course that orients majors to the CPL; see panel in third column

• Introduce Computational Physics, an elective junior/senior course

that focuses on PDEs; see panel in fourth column

• Include computer acquisition and analysis of data in Advanced Laboratory

- Incorporate computer-based exercises in other courses
- Expect students to use computer-based approaches on their own initiative in other contexts

Typical Physics Program

Bold and **Bold** = explicit use of computers **Red** + **Red** = required for minimum physics major

	Term 1	Term 2	Term 3
Fresh	Elective	Intro Class Physics	Intro Modern Physics
	Calculus I	Calculus II	Calculus III
	Freshman Studies	Freshman Studies	Elective
Soph	Electronics	Comput Mech	Electromag Theory
	Linear Alg/ODE	Elective	Elective
	Elective	Elective	Elective
Junior	Quantum Mech	Advanced Lab	Physics Elective
	Language	Language	Language
	Elective	Elective	Elective
Senior	Capstone Project	Physics Elective	Physics Elective
	Elective	Elective	Elective
	Elective	Elective	Elective

Available Physics Electives:

- Thermal Physics
- Optics
- Solid State Physics
- Advanced Modern Physics Special Topics (Relativity,
- Laser Physics
- Advanced E and M
- Mathematical Methods
 Independent Study
- Advanced Mechanics
- Computational Physics
- Plasma Physics
- Fluids, Particle Physics
- Tutorial

Curricular Components

Freshman Year:

•Data acquisition (LabPro Interface, LoggerPro)

- •Data analysis (Excel)
- •Visualization (Kaleidagraph)
- •Solving ODEs numerically (Excel)

Sophomore Year:

- 24/7 access to CPL; use on own initiative
- Multisim 7 in *Electronics*
- Introduction to CPL and to computational approaches in
- Computational Mechanics
- •Computational exercise in *Electromagnetic Theory*

Junior/Senior Year:

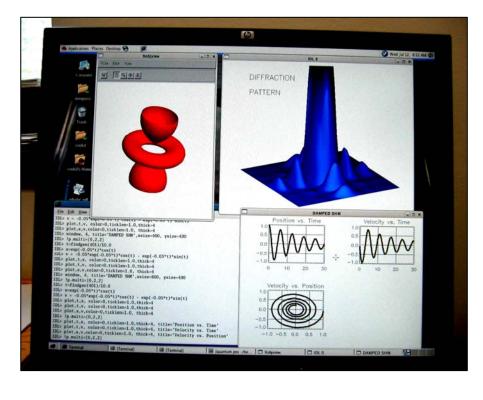
• 24/7 access to CPL

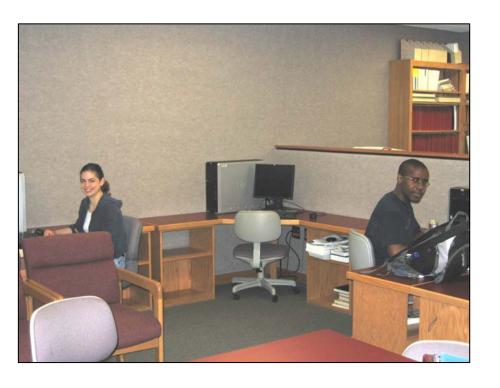
• Explicit exercises in *Quantum Mechanics* and some theory courses,

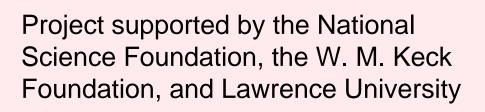
- depending on instructor
- On-line data acquisition and computer-based data analysis in Advanced Laboratory; LabView coming
- Elective course *Computational Physics*
- Student initiative in numerous courses and in tutorials, independent studies, and capstone projects

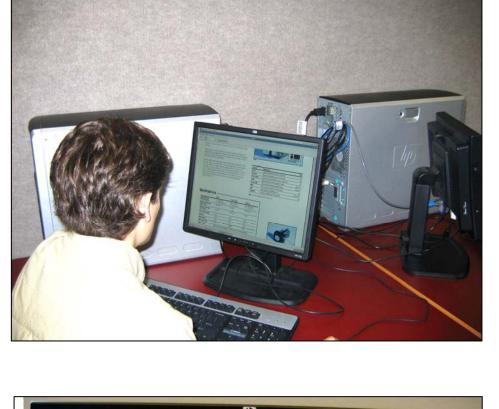
• Frequent preparation of papers and reports, both written and oral

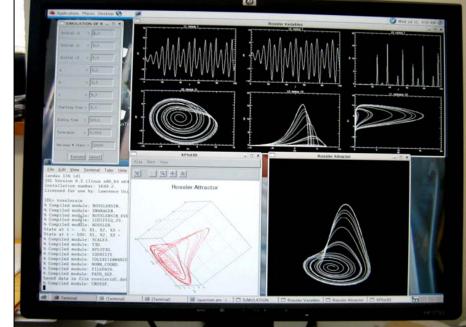
DAVID M. COOK, Department of Physics Lawrence University, Appleton, WI


Computational Mechanics (required of sophomores)


Catalog Description: Introduces symbolic and numerical computation through examples drawn mainly from classical mechanics but also from classical electromagnetism and quantum mechanics. This course emphasizes computer-based approaches to graphical visualization, the solution of ordinary differential equations, the evaluation of integrals, and the finding of eigenvalues and eigenvectors.


Prerequisites: Introductory Classical Physics, Differential Equations and Linear Algebra


Text: Notes for Computational Mechanics and Computation and Problem Solving in Undergraduate Physics, both by David M. Cook Weekly Schedule:


]]]] 0 WK 02	Orientation to LINUX (including text editor) Kinematics/Dynamics of Translation/Rotation Impulse/Momentum/Work/Kinetic Energy Gravity/Electromagnetic Forces/Friction/Tension Orientation to IDL/TGIF (basic capabilities; visualization)
WK 02	Impulse/Momentum/Work/Kinetic Energy Gravity/Electromagnetic Forces/Friction/Tension Orientation to IDL/TGIF (basic capabilities; visualization)
WK 02	Gravity/Electromagnetic Forces/Friction/Tension Orientation to IDL/TGIF (basic capabilities; visualization)
WK 02	Orientation to IDL/TGIF (basic capabilities; visualization)
	visualization)
· · · · · · · · · · · · · · · · · · ·	, ,
WK 03	Equations of Motion (constant force/torque; force
	dependent only on t ; only on x , only on v)
]	Potential energy, SHM, and equilibrium
· · · · · · · · · · · · · · · · · · ·	Work and potential energy in 3D
WK 04	Velocity-dependent forces
]	Damped and driven SHM
]	Resonance
	Coupled and small amplitude oscillations
WK 05	HOUR EXAMINATION
	Orientation to LaTeX
	Central Forces/Effective Potential/Orbital Equation
WK 06	Planets, Satellites, Comets
1	MID-TERM READING PERIOD
WK 07	Orientation to MAPLE
1	Using MAPLE to Solve ODEs
	Algorithms to Solve ODEs Numerically
WK 08	Using IDL to Solve ODEs Numerically
WK 09	HOUR EXAMINATION
	Symbolic Evaluation of Integrals
WK 10	Algorithms to Evaluate Integrals Numerically
1	Using IDL to Evaluate Integrals Numerically
WK 11	FINAL EXAMINATION

Day 01	Programming Structures and Strategies		
	Programming in FORTRAN and IDL		
Day 02	Analytic/Physical Derivation of PDEs (wave,		
	diffusion, Laplace, and fluid dynamics equations)		
Day 04	Finite Difference Methods (Part I)		
Day 05	ASSIGN DUE; Driving Programs for LSODE (Part I)		
Day 06	Driving Programs for LSODE (Part II)		
. Day 07	No Class; Work on Assignment		
Day 08	ASSIGN DUE; Finite Difference Methods (Part II)		
Day 09	Finite Difference Methods (Part III)		
Day 10	No Class; Work on Assignment		
Day 11	No Class; Work on Assignment		
Day 12	Oral Presentations on Assignment		
Day 13	ASSIGN DUE; MUDPACK/Multigrid Techniques (Part I)		
Day 14	MUDPACK/Multigrid Techniques (Part II)		
Day 15	No Class; Work on Assignment		
Day 16	ASSIGN DUE; Finite Element Methods (Part I)		
Day 17	Finite Element Methods (Part II)		
Day 18	Finite Element Methods (Part III)		
Day 19	MID-TERM READING PERIOD; No Class		
Day 20	No Class; Work on Assignment		
Day 21	ASSIGN DUE; FEMs with MARC/MENTAT (Part I)		
Day 22	FEMs with MARC MENTAT (Part II)		
Day 23	Project Proposal Due; No Class; Work on Assignment		
Day 24	Oral Presentations on Assignment		
Day 25	Assignment Due; No Class; Start Projects		
Day 26	No Class; Work on Projects		
Day 27	THANKSGIVING VACATION		
Day 28	THANKSGIVING VACATION		
Day 29	No Class; Work on Projects		
Day 30	No Class; Work on Projects		
Day 31	Oral Presentations on Projects; Final Papers Due		
	No Final Examination		

Acknowledgements and Contact

David M. Cook Department of Physics Lawrence University Box 599 Appleton, WI 54912

Institution Website: Department Website: Project Website:

Voice: 920-832-6721 Fax: 920-832-6962 Email: <u>david.m.cook@lawrence.edu</u>

www.lawrence.edu www.lawrence.edu/dept/physics/ www.lawrence.edu/dept/physics/ccli

LAWRENCE UNIVERSITY

Computational Physics (junior/senior elective)

Catalog Description: Treats computational approaches to problems in physics with particular emphasis on finite difference and finite element methods for solving partial differential equations as they arise in electromagnetic theory, fluid mechanics, heat transfer, and quantum mechanics, and on techniques for graphical visualization of the solutions.

Prerequisite: Computational Mechanics

Items on Table for Review

• Lawrence version of *Computation and Problem Solving in* Undergraduate Physics (CPSUP)

- Solutions to Representative Exercises from CPSUP
- Notes for Computational Mechanics
- Lawrence Local Guide
- Introductory Classical Physics Laboratory Manual
- Theory of Experiment

• Syllabi for Computational Mechanics, Electromagnetic Theory, Quantum Mechanics, Computational Physics

Please take a card and/or a copy of the reduced poster